Search results for: peak expiratory flow.
1548 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation
Authors: A. Mohajer, A. Noroozi, S. Norouzi
Abstract:
The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.
Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28041547 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment
Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy
Abstract:
In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.Keywords: Microfluidic, biosensor, MEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8851546 Demonstration of a Low-Cost Monocycle Pulse for UWB Radio Transceiver
Authors: Richard Thai-Singama, Jean-Pierre Belin, Frédéric Du Burck, Marc Piette
Abstract:
This paper presents a simple and original method for the generation of short monocycle pulses based on the transient response of a passive band-pass filter. The recorded sub-nanosecond pulses show a good symmetry and a small ringing (13 % of the peak amplitude). Their spectral density covers the range 3.1 GHz to 10.6 GHz. The possibility to adapt the pulse spectral density to the indoor FCC frequency mask is demonstrated with a prototype working at a reduced frequency (FCC/1000). A detection technique is proposed.Keywords: Impulse, Monocycle, Transient, UWB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321545 Evaluation of Wavelet Filters for Image Compression
Authors: G. Sadashivappa, K. V. S. AnandaBabu
Abstract:
The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261544 Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation
Authors: Nahid Ghasemi, Morteza Sohrabi, Yasan Soleymani
Abstract:
The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.Keywords: Impinging streams reactor, Residence timedistribution, CFD, Eulerian-Lagrangian approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23791543 Redesigning Business Processes: A Method Based on Simulation and Process Mining Techniques
Authors: Zahra Mohammadnazari, Fateme Rostambeygi, Fatemeh Dehrouyeh, Hwang Ki-Soon, Amir Aghsami
Abstract:
Corporations have always prioritized efforts to examine and improve processes. Various metrics, such as the cost and time required to implement the process and can be specified in this regard. Process improvement can be defined as an improvement of these indicators. This is accomplished by looking at prospective adjustments to the current executive process model or the resources allotted to it. Research has been conducted in this paper to the improve the procurement process and aims to explore assessment prospects in the project using a combination of process mining and simulation (benefiting from Play-In and Play-Out methodologies). To run the simulation, we will need to complete the control flow diagram, institution settings, resource settings, and activity settings. The process of mining event logs yields the process control flow. However, both the entry of institutions and the distribution of resources must be modeled. The rate of admission of institutions and the distribution of time for the implementation of activities will be determined in the next step.
Keywords: Business reengineering, Petri net, process-based simulation, process mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4841542 Numerical Analysis of Turbulent Natural Convection in a Square Cavity using Large- Eddy Simulation in Lattice Boltzmann Method
Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan Nia
Abstract:
In this paper Lattice Boltzmann simulation of turbulent natural convection with large-eddy simulations (LES) in a square cavity which is filled by water has been investigated. The present results are validated by finds of other investigations which have been done with different numerical methods. Calculations were performed for high Rayleigh numbers of Ra=108 and 109. The results confirm that this method is in acceptable agreement with other verifications of such a flow. In this investigation is tried to present Large-eddy turbulence flow model by Lattice Boltzmann Method (LBM) with a clear and simple statement. Effects of increase in Rayleigh number are displayed on streamlines, isotherm counters and average Nusselt number. Result shows that the average Nusselt number enhances with growth of the Rayleigh numbers.Keywords: Turbulent natural convection, Large Eddy Simulation, Lattice Boltzmann Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20211541 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers
Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman
Abstract:
Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.
Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31221540 Numerical Predictionon the Influence of Mixer on the Performance of Urea-SCR System
Authors: Kyoungwoo Park, Chol-Ho Hong, Sedoo Oh, Seongjoon Moon
Abstract:
Diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filtersin order to meet more stringer diesel emission standard. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the Urea-SCR device for diesel passenger cars and light duty vehicles. In the present study, the effects of the mixer on the efficiency of urea-SCR System (i.e., NH3uni- formityindex (NH3 UI) is investigated by predicting the transport phenomena in the urea-SCR system. The three dimensional Eulerian-Lagrangian CFD simulationfor internal flow and spray characteristics in front of SCR is carried out by using STAR-CCM+ 7.06 code. In addition, the paper proposes a method to minimize the wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading.
Keywords: Computational fluid dynamics, Multi-phase flow, NH3 uniformity index, Urea-SCR system, Urea-water-solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36411539 Simulations of Laminar Liquid Flows through Superhydrophobic Micro-Pipes
Authors: Mohamed E. Eleshaky
Abstract:
This paper investigates the dynamic behavior of laminar water flows inside superhydrophobic micro-pipes patterned with square micro-posts features under different operating conditions. It also investigates the effects of air fraction and Reynolds number on the frictional performance of these pipes. Rather than modeling the air-water interfaces of superhydrophobic as a flat inflexible surface, a transient, incompressible, three-dimensional, volume-of-fluid (VOF) methodology has been employed to continuously track the air–water interface shape inside micro-pipes. Also, the entrance effects on the flow field have been taken into consideration. The results revealed the strong dependency of the frictional performance on the air fractions and Reynolds number. The frictional resistance reduction becomes increasingly more significant at large air fractions and low Reynolds numbers. Increasing Reynolds number has an adverse effect on the frictional resistance reduction.
Keywords: Drag reduction, laminar flow in micropipes, numerical simulation, superhyrophobic surfaces, microposts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501538 Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine
Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini
Abstract:
This paper presents a mean for reducing the torque variation during the revolution of a vertical-axis wind turbine (VAWT) by increasing the blade number. For this purpose, twodimensional CDF analysis have been performed on a straight-bladed Darreius-type rotor. After describing the computational model, a complete campaign of simulations based on full RANS unsteady calculations is proposed for a three, four and five-bladed rotor architecture characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.Keywords: CFD, VAWT, NACA 0021, blade number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53361537 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: Post-stall, unsteady, wing, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9901536 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.
Keywords: Computed tomography, human middle ear, harmonic response, pathologies, tympanic membrane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10131535 Simulation of Loss-of-Flow Transient in a Radiant Steam Boiler with Relap5/Mod3.2
Authors: A.L.Deghal.Cheridi, A.Chaker, A.Loubar
Abstract:
loss of feedwater accident is one of the frequently sever accidents in steam boiler facilities. It threatens the system structural integrity and generates serious hazards and economic loses. The safety analysis of the thermal installations, based extensively on the numeric simulation. The simulation analysis using realistic computer codes like Relap5/Mod3.2 will help understand steam boiler thermal-hydraulic behavior during normal and abnormal conditions. In this study, we are interested on the evaluation of the radiant steam boiler assessment and response to loss-of-feedwater accident. Pressure, temperature and flow rate profiles are presented in various steam boiler system components. The obtained results demonstrate the importance and capability of the Relap5/Mod3.2 code in the thermal-hydraulic analysis of the steam boiler facilities.
Keywords: Radiant steam boiler, Relap5/Mod3.2 code system, Steady-state simulation, Transient simulation, Loss of feedwateraccident
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221534 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink in a Closed Enclosure
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
The present study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. T0 validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: Inverse method, FLUENT, Plate-fin heat sink, Heat transfer characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511533 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid
Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari
Abstract:
Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041532 Dominant Flow Features of Two Inclined Impinging Jets Confined in Large Enclosure
Authors: T. Chammem, H. Mhiri, O. Vauquelin
Abstract:
The present study was provided to examine the vortical structures generated by two inclined impinging jets with experimental and numerical investigations. The jets are issuing with a pitch angle α=40° into a confined quiescent fluid. The experimental investigation on flow patterns was visualized by using olive particles injected into the jets illuminated by Nd:Yag laser light to reveal the finer details of the confined jets interaction. It was observed that two counter-rotating vortex pairs (CVPs) were generated in the near region. A numerical investigation was also performed. First, the numerical results were validates against the experimental results and then the numerical model was used to study the effect of section ratio on the evolution of the CVPs. Our results show promising agreement with experimental data, and indicate that our model has the potential to produce useful and accurate data regarding the evolution of CVPs.Keywords: Inclined impinging jets, counter-rotating vortex pair, CFD, experimental investigation, section ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271531 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects
Authors: Yohannes Yirga, Daniel Tesfay
Abstract:
The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.
Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37851530 End Point Detection for Wavelet Based Speech Compression
Authors: Jalal Karam
Abstract:
In real-field applications, the correct determination of voice segments highly improves the overall system accuracy and minimises the total computation time. This paper presents reliable measures of speech compression by detcting the end points of the speech signals prior to compressing them. The two different compession schemes used are the Global threshold and the Level- Dependent threshold techniques. The performance of the proposed method is tested wirh the Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error parameter measures.
Keywords: Wavelets, End-points Detection, Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13781529 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.
Keywords: Direct steam generation, parabolic trough collectors, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7891528 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801527 A Case Study to Assess the Validity of Function Points
Authors: Neelam Bawane nee' Singhal, C. V. Srikrishna
Abstract:
Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.Keywords: Function Points, Data Flow Diagram, Lines ofCodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36721526 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method
Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai
Abstract:
The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.Keywords: Gasified System, Identification, Response SurfaceMethod
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12471525 Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube
Authors: Abdulhassan Abd. K, Sattar Al-Jabair, Khalid Sultan
Abstract:
We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.Keywords: Newtonian, NUR factor, Brownian motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601524 Theoretical and Analytical Approaches for Investigating the Relations between Sediment Transport and Channel Shape
Authors: Nidal Hadadin
Abstract:
This study investigated the effect of cross sectional geometry on sediment transport rate. The processes of sediment transport are generally associated to environmental management, such as pollution caused by the forming of suspended sediment in the channel network of a watershed and preserving physical habitats and native vegetations, and engineering applications, such as the influence of sediment transport on hydraulic structures and flood control design. Many equations have been proposed for computing the sediment transport, the influence of many variables on sediment transport has been understood; however, the effect of other variables still requires further research. For open channel flow, sediment transport capacity is recognized to be a function of friction slope, flow velocity, grain size, grain roughness and form roughness, the hydraulic radius of the bed section and the type and quantity of vegetation cover. The effect of cross sectional geometry of the channel on sediment transport is one of the variables that need additional investigation. The width-depth ratio (W/d) is a comparative indicator of the channel shape. The width is the total distance across the channel and the depth is the mean depth of the channel. The mean depth is best calculated as total cross-sectional area divided by the top width. Channels with high W/d ratios tend to be shallow and wide, while channels with low (W/d) ratios tend to be narrow and deep. In this study, the effects of the width-depth ratio on sediment transport was demonstrated theoretically by inserting the shape factor in sediment continuity equation and analytically by utilizing the field data sets for Yalobusha River. It was found by utilizing the two approaches as a width-depth ratio increases the sediment transport decreases.Keywords: Sediment transport, shape factor, hydraulicgeometry, flow discharge, width depth ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951523 Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter
Authors: Mevlüt Burak Dalmış, Kemal Yaman
Abstract:
In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (g and k-method) of ZAERO© is also done. It is seen that, k-method gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures.
Keywords: Flutter, plate, subsonic flow, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9581522 Computation of Global Voltage Stability Margin in a Practical Power Network Incorporating FACTS in the OPF Frame Work
Authors: P. Nagendra, S. Halder nee Dey, S. Paul, T. Datta
Abstract:
This paper presents a methodology to assess the voltage stability status combined with optimal power flow technique using an instantaneous two-bus equivalent model of power system incorporating static var compensator (SVC) and thyristor controlled series compensator (TCSC) controllers. There by, a generalized global voltage stability indicator being developed has been applied to a robust practical Indian Eastern Grid 203-bus system. Simulation results have proved that the proposed methodology is promising to assess voltage stability of any power system at any operating point in global scenario. Voltage stability augmentation with the application of SVC at the weakest bus and TCSC at critical line connected to the weakest bus is compared with the system having no compensation. In the proposed network equivalent model the generators have been modeled more accurately considering economic criteria.
Keywords: Equivalent two-bus model, global voltage security indicator, optimal power flow, SVC, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20461521 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations
Authors: Marco Actis Grande, Somlak Wannarumon
Abstract:
This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27371520 Implementation Gas Lift Selection Technique and Design in the Wafa Field of Ghadamis Basin, West Libya
Authors: E. I. Fandi, E. A. Alfandi, M. A. Alrabib
Abstract:
Implementing of a continues flow gas lift system for one vertical oil well producer in Wafa field was investigated under five reservoir pressures and their dependent parameters. Well 03 producers were responded positively to the gas lift system despite of the high well head operating pressures. However, the flowing bottom hole pressures were reduced by a ratio from 6 to 33 % in the case A3 for example, for the design runs conducted under the existing operating conditions for years 2003, 2006 and 2009. This reduction in FBHP has increased the production rate by a ratio from 12 to 22.5%. The results indicated that continues flow gas lift system is a good candidate as an artificial lift system to be considered for the one vertical producer covered by this study. Most significantly, timing for artificial lift by a gas lift system for this field is highly dependent on the amount of gas available at the time of implementation because of the high gas production rate from the top of the reservoir.
Keywords: Gas lift, Wafa field, Ghadamis Basin, Artificial lift, Libya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35181519 Peak-to-Average Power Ratio Reduction in OFDM Systems using Huffman Coding
Authors: Ashraf A. Eltholth, Adel R. Mikhail, A. Elshirbini, Moawad I. Moawad, A. I. Abdelfattah
Abstract:
In this paper we proposed the use of Huffman coding to reduce the PAR of an OFDM system as a distortionless scrambling technique, and we utilize the amount saved in the total bit rate by the Huffman coding to send the encoding table for accurate decoding at the receiver without reducing the effective throughput. We found that the use of Huffman coding reduces the PAR by about 6 dB. Also we have investigated the effect of PAR reduction due to Huffman coding through testing the spectral spreading and the inband distortion due to HPA with different IBO values. We found a complete match of our expectation from the proposed solution with the obtained simulation results.Keywords: HPA, Huffman coding, OFDM, PAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2597