
 

 

  
Abstract—In this paper Lattice Boltzmann simulation of 

turbulent natural convection with large-eddy simulations (LES) in a 
square cavity which is filled by water has been investigated. The 
present results are validated by finds of other investigations which 
have been done with different numerical methods. Calculations were 
performed for high Rayleigh numbers of Ra=108 and 109. The results 
confirm that this method is in acceptable agreement with other 
verifications of such a flow. In this investigation is tried to present 
Large-eddy turbulence flow model by Lattice Boltzmann Method 
(LBM) with a clear and simple statement. Effects of increase in 
Rayleigh number are displayed on streamlines, isotherm counters and 
average Nusselt number. Result shows that the average Nusselt 
number enhances with growth of the Rayleigh numbers. 
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I. INTRODUCTION 

LTHOUGH science has great development in recent 
years, turbulent flow is still a big problem for scientists 

and engineers [1]. Many efforts have been performed by now, 
but because of its complexity it is not still solved. In order to 
solve turbulent flows, different models are available according 
to the flow regime and the applied region. One of these models 
which is considered a lot nowadays is large eddy model. In this 
model, for the relevant equations integration is done in small 
distances. So in this way small turbulences which are due to 
small eddies are omitted.  So the equations which are the agent 
of large eddy’s behavior remain. The effect of small eddies on 
large eddies is considered in the way they are modeled in 
equations.  

In recent decade many engineers focused on Lattice 
Boltzmann to simulate the fluid flow and heat transfer.  
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In conflict with computational fluid dynamic (CFD), Lattice 

Boltzmann method is based upon microscopic model and 
mesoscopic kinetic equation, that set of particle behavior in a 
system is used for simulating continuum of the system.  

In Lattice Boltzmann method all calculations are explicit 
and so it is not needed to solve any set of equations. This 
method has the ability to be paralleled, because of special 
identity of the calculations. And also it is so applicable since it 
is not difficult to apply boundary conditions for complex 
geometries. The important usages can be: simulation of fluid 
flow and heat transfer in problems for flows encountering 
difficult boundary conditions (porous media, moving cycloid 
surfaces, etc), multiphase flows, non-Newtonian fluid flow 
(simulation of blood), turbulent flow and etc. Various 
investigations have been done for laminar flow in square 
cavity [2] and also for transient and turbulent regimes [3-5]. In 
natural convection flow, Rayleigh number less than 106 
accounts for laminar flow, and Rayleigh number more than it, 
accounts for turbulent behavior. Many researchers have been 
studied the laminar natural convection in a square cavity using 
Lattice Boltzmann [6-7], but because turbulent flow is so 
complicated and Lattice Boltzmann method is a novel theory, 
few verifications have been done in such a case using Lattice 
Boltzmann for turbulent flow [8]. In this study turbulent flow 
in a square cavity is verified using Lattice Boltzmann method 
based on Large Eddy Simulation model, equilibrium 
distribution functions for temperature field is different with 
other works and first time that it used to this model, it is 
observed that acceptable agreement exists between the results 
and achievements from other analysis of fluid flow.  

II. MATHEMATICAL FORMULATION  

A. Lattice Boltzmann Method  

The numerical solution based on Boltzmann equation is 
named Lattice Boltzmann method which was initially proposed 
in 1986 by Ferish et al[9] . After that more strongly in 1988 
Mc namara and Vzeneti [10], in 1989 Higura and Jimens [11], 
in 1991 Koelman [12] and in 1992 Chen et al [13] improved it. 
In Lattice Boltzmann method ƒ and g are two functions called 
as flow distribution function and temperature distribution 
function respectively. These functions are utilized to obtain 
macroscopic characteristics of the flow like velocity, pressure, 
temperature and etc.In this paper a square grid and D2Q9 
model is used for both flow and temperature functions. By 
detachment of Navier-Stocks equations, governing equations 
for flow and temperature functions are as follow: 
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For flow function: 

( ) ( ) ( ) ( )1, , , ,eq
i i i i ii

m
f x c t t t f x t f x t f x t tc Fτ

 
  

+ ∆ +∆ − = − +∆           (1) 

That ( )eqf α  is the equilibrium distribution functions, and mτ   

is relaxation time, which is described in D2Q9 model like: 

( )23 9 3
1 .

2 4 22 2

eqf w e u e u u u
c c c

ρα α α α
 

= ⋅ + ⋅ + − ⋅ 
 

 (2) 

In which Wα are: 

4 / 9 0

1 / 9 1, 2, 3, 4

1 / 36 5, 6, 7,8

w

α
αα
α

=
= =
 =

 
 

(3) 

And eα is defined as: 

( )

( ) ( )

( ) ( )

0,0 0

cos 1 ,sin 1 1,2,3,4
4 4

cos 1 ,sin 1 2 5,6,7,8
4 4

e c

c

α

π πα α αα

π πα α α


 =
     = − − ⋅ =        
     − − ⋅ =        

 

 
 
 

(4) 

In which txc δδ /=  , xδ  and tδ are length and time 

constants in the grid respectively.        
In discretized velocity region, the amounts for density and 
momentum are calculated as follow: 

8 8

0 0

eqf fρ α αα α
= =∑ ∑

= =

 (5) 

8 8
u e e

1 1

eqf fρ α α α αα α
⋅ = =∑ ∑

= =

 (6) 

And mτ  is : 

3 1 / 2
m

τ ν= +  (7) 

For temperature function: 
1 ( )(x , ) (x , ) [ (x , ) (x , )]eqg t g t g t g t

i i i i
h

α α α ατ
= − −

          
 (8) 

Where heat transfer equilibrium distribution functions for 
D2Q9 model is: 

3( ) [1 . ]
2

e qg T wα α α= + e u
c

 
(9) 

And τh is : 
3 1 / 2

h
τ σ= +  (10) 

Where temperature is calculated as: 
8 8 ( )

0 0

eqT g gα αα α
= =∑ ∑

= =

 
(11) 

 

B. Large Eddy Simulation Method 

In this model the main aim is obtaining tν  and ( )
Pr

t
t

t

να =    

where Prt  is turbulent Prandtle number which is assumed to 

be 4. In order to evaluate tν   we perform as follow: 

1/ 2
2 Pr2( ) .

Pr

g
C S T

t gt
ν

 
 = ∆ + ∇
 
 

��

��

 (12) 

C is considered as Smagorinsky constant and in this paper it is 
assumed as 0.1 [14] and∆   is gained from 

2 2( ) ( )x y∆ = ∆ + ∆ , x∆ and y∆ are grid extents in X and 

Y directions. 

For S  we have: 

2S S Sαβ αβ=  (13) 

/ 2S u uαβ β αα β
 = ∂ +∂ 
 

 (14) 

 

C. Lattice Boltzmann Method based on Large Eddy 
Simulation Model 

Large eddy model is easily applied in Lattice Boltzmann 

method the way tν  affects relaxation time [15-17]. 

2( 0.5)
0

c
total s m t

ν τ ν ν= − = +  (15) 

Where totalν  and 0ν  are total viscosity and initial viscosity 

respectively. 

( )0 0
02 2 2 2

0.5 0.5t t t
m

s s s sc c c c

ν ν ν ν ντ τ
+

= + = + + = +  (16) 

 

To obtain tν  in Lattice Boltzmann method we have: 

3

2 m

S Q
τ

=  (17) 

8

0
( )eq

i i i ii
Q e e f fα β=

= −∑
 (18) 

If we put S   in equation (12): 

1/ 2

22
2

9 Pr
( ) .

4 Prt
m t

g
C Q T

g
ν

τ

 
 = ∆ + ∇
 
 

��

��

 

 
(19) 

And if we substitute the above equation in (16): 
1/2

22
2

0 2

9 Pr
( ) .

4 Prm t

total
s

g
C Q T

g

c

τ
τ τ

 
 ∆ + ∇
 
 = +

��

��

 

 
 
(20) 

To obtain relaxation time in temperature function equation we 
have: 

0 02 2

/ Prt t t
h D D

s sc c

α ντ τ τ= + = +  (21) 

Where 0
0 2

0.5D
sc

ατ = +
 

Substituting new relaxation time in equation (1) and (8) yields 
to Lattice Boltzmann equations based on large eddy model. 
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D. Boundary conditions for Flow and Temperature 

The geometry of the present problem is shown in Fig 1.a.   
 

 
Fig. 1a Geometry of the present study 

 
Implementation of boundary conditions is very important 

for the simulation. The unknown distribution functions 
pointing to the fluid zone at the boundaries nodes must be 
specified. Concerning the no-slip boundary condition, bounce 
back boundary condition is used on the solid boundaries. In 
Fig. 1.b the unknown distribution functions, which needs to be 
determined, are shown as dotted lines. For instance the 
unknown density distribution functions at the boundary east 
can be determined by the following conditions: 

6, 8,n nf f=    ,    7, 5,n nf f=   ,    4, 2,n nf f=           (22) 

 
Fig. 1b Boundary conditions with unknown and known nodes 

 
The north and south of the boundaries are adiabatic then 

bounce back boundary condition is used on them. Temperature 
at the west and east wall are known, in the west wall   TH =1.0 
and in the east wall TC=0. Since we are using D2Q9, the 
unknowns distribution functions are g1, g5, g8 at west wall  
which are evaluated as follows: 

1 1 3 3( )Hg T gω ω= + −  (23a) 

5 5 7 7( )Hg T gω ω= + −  (23b) 

8 8 6 6( )Hg T gω ω= + −  (23c) 

 
And for east wall the unknowns distribution functions 

evaluated as follows: 

1 3 1( )3 Cg T gω ω= + −   (24a) 

7 5 7 5( )Cg T gω ω= + −  (24b) 

6 8 6 8( )Cg T gω ω= + −  (24c) 

III.  RESULTS AND DISCUSSION  

A. Validation 

Table I shows the comparison of the average Nusselt 
numbers for different Rayleigh numbers between present 
results and finds of Barakoset al [18] and Dixit [19] as a cavity 
was filled by air with Pr=0.71. Clearly it is seen that the results 
match previous work.  

 
TABLE I 

COMPARISON OF AVERAGE NUSSELT NUMBER WITH PREVIOUS WORKS 

 

B. Effect of Rayleigh number on the streamline and 
isotherm 

Figs 2 and 3 show the isotherms and the stream lines for 
Rayleigh numbers of 108 and 109. As it is clear, results are in 
good agreement with other methods for numerically analyzing 
turbulent flow in cavity. When Rayleigh number increases, the 
symmetry state wastes and the centralization of the streamlines 
in the core of the cavity tend the hot wall. The heat transfer 
process increases when Rayleigh number enhances. This 
process is obvious where two isotherms of T=0.1 and 0.9 
move to the cold wall and the hot wall respectively when 
Rayleigh number rises. 

 

 
(b) (a) 

Fig. 2 The isotherms (a), The streamlines (b) for Ra=108 
 

  
(b) (a) 

Fig. 3 The isotherms (a), The streamlines (b) for Ra=109 
 

Rayleigh 
Number 

Average Nusselt 
Number(this work) 

Average Nusselt Number 
[18] 

Average Nusselt 
Number [19] 

108 31.2 32.3 30.5 
109 58.1 60.1 57.4 
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Fig. 4 illustrates the values of the temperature on the axial 
midline for both Rayleigh numbers. It is obvious that the value 
enhances with the augmentation of Rayleigh numbers whereas 
its state gets more stable by increase in Rayleigh numbers. The 
cause of this phenomenon can be observed in the isotherm 
counters which they became stable by the augmentation of 
Rayleigh numbers. 

 
Fig. 4 Temperature distribution at mid-height of cavity for different 

Ra-values 
 

Figs.5 and 6 show the local Nusselt number on the hot wall 
and on the cold wall of the cavity respectively for both 
Rayleigh numbers. The trend of the local Nusselt number is 
the same for various Rayleigh numbers and just their values 
increase by the augmentation of Rayleigh number. This trend 
demonstrates which the most difference of temperature is at 
the bottom of the cavity whereas the convection process 
doesn’t form completely.   On the other hand, Figs.5 and 6 
exhibits that the local Nusselt number on the hot wall and on 
the cold wall have a symmetric manner which shows the 
accuracy of this method for solving this flow. 

 

 
Fig. 5 Nusselt number distributions on the hot wall at Ra=108 and 109 

 

 
Fig. 6 Nusselt number distributions on the cold wall at Ra=108 and 

109 

IV. CONCLUSIONS 

Turbulent natural convection in a square cavity which are 
filled with water by Pr=6.2 has been conducted numerically by 
Lattice Boltzmann Method (LBM). This study has been 
carried out for Rayleigh numbers of Ra=108 and 109. A 
proper validation with previous numerical investigations 
demonstrates that Lattice Boltzmann Method is an appropriate 
method for turbulent flows problems. The isotherms get more 
stable when Rayleigh numbers augment. The streamlines in the 
core of the flow lose the symmetric state which exists at low 
Rayleigh numbers by increase in Rayleigh numbers. 
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