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Abstract—In this paper
turbulent natural convection with large-eddy sintiolas (LES) in a
square cavity which is filled by water has beenestigated. The
present results are validated by finds of otheestigations which
have been done with different numerical methodéculaions were
performed for high Rayleigh numbers of Ra&a6d 18. The results
confirm that this method is in acceptable agreemeitih other
verifications of such a flow. In this investigatias tried to present
Large-eddy turbulence flow model by Lattice BoltzmaMethod
(LBM) with a clear and simple statement. Effectsinérease in
Rayleigh number are displayed on streamlines, ésatltounters and
average Nusselt number. Result shows that the gweMNusselt
number enhances with growth of the Rayleigh numbers
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|. INTRODUCTION

Lattice Boltzmann simulation of

In conflict with computational fluid dynamic (CFD)attice
Boltzmann method is based upon microscopic model an
mesoscopic kinetic equation, that set of parti@bavior in a
system is used for simulating continuum of theesyst

In Lattice Boltzmann method all calculations areplixt
and so it is not needed to solve any set of equstidhis
method has the ability to be paralleled, becausepeafial
identity of the calculations. And also it is so Apgible since it
is not difficult to apply boundary conditions foromplex
geometries. The important usages can be: simulatidiuid
flow and heat transfer in problems for flows endeung
difficult boundary conditions (porous media, moviogcloid

Eddysurfaces, etc), multiphase flows, non-Newtoniaridfifiow

(simulation of blood), turbulent flow and etc. Maub
investigations have been done for laminar flow gquase
cavity [2] and also for transient and turbulentinegs [3-5]. In

ALTHOUGH science has great development in recef@tural convection flow, Rayleigh number less thbd6

years, turbulent flow is still a big problem foriesatists
and engineers [1]. Many efforts have been perforimedow,
but because of its complexity it is not still salvén order to
solve turbulent flows, different models are avdiasccording
to the flow regime and the applied region. Onehest models
which is considered a lot nowadays is large eddgighdn this
model, for the relevant equations integration isedn small
distances. So in this way small turbulences whieh cdue to
small eddies are omitted. So the equations wietiree agent
of large eddy’s behavior remain. The effect of dradties on
large eddies is considered in the way they are feddm
equations.

accounts for laminar flow, and Rayleigh number mibian it,
accounts for turbulent behavior. Many researchese tbeen
studied the laminar natural convection in a sqeasdty using
Lattice Boltzmann [6-7], but because turbulent flésvso
complicated and Lattice Boltzmann method is a naleory,
few verifications have been done in such a cassgusattice
Boltzmann for turbulent flow [8]. In this study twlent flow
in a square cavity is verified using Lattice Bolemn method
based on Large Eddy Simulation model, equilibrium
distribution functions for temperature field is fdifent with
other works and first time that it used to this mlodt is
observed that acceptable agreement exists betweeresults

In recent decade many engineers focused on Latu@@d achievements from other analySiS of fluid flow.

Boltzmann to simulate the fluid flow and heat tfans
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Il. MATHEMATICAL FORMULATION

A. Lattice Boltzmann Method

The numerical solution based on Boltzmann equaifon
named Lattice Boltzmann method which was initigitpposed
in 1986 by Ferish et al[9] . After that more striynon 1988
Mc namara and Vzeneti [10], in 1989 Higura and disng.1],
in 1991 Koelman [12] and in 1992 Chen et al [13pioved it.
In Lattice Boltzmann method f and g are two funddicalled
as flow distribution function and temperature disition
function respectively. These functions are utilizedobtain
macroscopic characteristics of the flow like vetpcpressure,
temperature and etc.In this paper a square grid 22Q9
model is used for both flow and temperature fumsioBy
detachment of Navier-Stocks equations, governingatons
for flow and temperature functions are as follow:
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For flow function:

(x+tht+At)—f (xt)== 1[1‘ (xt)—fﬂl(xxﬂ+ﬂqF 1)

That fa(eq’ is the equilibrium distribution functions, ari,
is relaxation time, which is described in D2Q9 nidike:

2 3
feq=,omJ [1+3e m+ie u —uﬁll} 2
o1 S e Lo, -5,
In which W, are:
4/9 a=0
W = 1/9 a=123,4 (3)
1/36 a=5,6,7,8
And g, is defined as:
(00 a=0
_ a7t b T _
e,= [co{(a :)4} ,SIV|E(G’ )lZD a=123¢  (4)

(ofle-32] sfla- ) m o= 567

In whichc=&/& , dx and Jt are length and time

constants in the grid respectively.
In discretized velocity region, the amounts for signand
momentum are calculated as follow:

8 8
p=3f =3 9 (5)

a=07 a=07

8
pli= Zef=2eaf§q (6)
a=1 a=1
And 7, is
T =3v+1/2 (7
For temperature function'
8

9, (¢ =g, (x )~ f[g (x, )-8V (. )]
h

Where heat transfer equilibrium distribution fuocis for
D2Q9 model is:

(eq) _ 3
9, —Twa[1+ ea.u]

2 9)
And tyis :
T =30 +1/2 (10)
Where temperature is calculated as:
7o Sy 2 E g
= 9,= X 9, (11)
a=0 a=0

1/2
v, =(C0)2 \s\ DT 9 (12)
ol
C is considered as Smagorlnsky constant and irptper it is
assumed as 0.1 [14] aid is gained from

A=(AX)*+(Ay)?, AX and Ay are grid extents in X and

Y directions.

For ‘g‘ we have:

‘g‘ = ‘lzgaﬂ §aIB (13)
§a;3 =(aaﬁlg +aﬁaa]/ 2 (14)

C.Lattice Boltzmann Method based on Large Eddy
Smulation Model

Large eddy model is easily applied in Lattice Buiénn
method the way/, affects relaxation time [15-17].

_~ 2 _ —
Ytotal ~Cs (Tm 0'5)_'/O+Vt (15)

WhereV,,, andV, are total viscosity and initial viscosity
respectively.

v, +V. V v
m—( . )+05— °+05+ =7, +-% (16)
CS CS CS CS
To obtainV, in Lattice Boltzmann method we have:
S| = —IQ | (17)
Q Z| =0 a |,B(f _f eq) (18)
If we put ‘S‘ in equation (12):
1/2
=0y o % QF+ DT 9 (19)
o o]
And if we substitute the above equation in (16):
1/2
9,2, Pr__g
CAY| Q| +—0OT7 .=
€8 ar < Pr ‘g‘ (20)

lga =Tt

To obtain relaxation time in temperature functigoiaion we
have:

, , v, P
B. Large Eddy Smulation Method I, =1y, +C_t2 =7, + tC d £ (21)
V S S
In this model the main aim is obtaining and a, = (=)
Pt wherery, = ° +0.5
where Pr is turbulent Prandtle number which is assumed to CS

be 4. In order to evaluatg we perform as follow:
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Substituting new relaxation time in equation (19l #8) yields
to Lattice Boltzmann equations based on large edalyel.
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D.Boundary conditions for Flow and Temperature
The geometry of the present problem is shown inlkag

u={); v=0; Insulated

[

u={}; v=0; Insulated
Fig. 1a Geometry of the present study

93=Tc(@+w)-g: (24a)
g;=Tc(w+w)—gs (24b)
Os=Tc(wa+twr)—-gs (240)

Ill.  RESULTS AND DISCUSSION

A.Validation

Table | shows the comparison of the average Nusselt
numbers for different Rayleigh numbers between emes
results and finds of Barakoset al [18] and DixR]&s a cavity
was filled by air with Pr=0.71. Clearly it is setrat the results
match previous work.

TABLE |
COMPARISON OFAVERAGE NUSSELTNUMBER WITH PREVIOUS WORKS

Rayleigh
Numbe

Average Nusselt
Number(this work

Average Nusselt Number
[18]

Average Nusselt
Number [19

10°

31.2

32.3

30.5

Implementation of boundary conditions is very intpat

10°

58.1

60.1

57.4

for the simulation. The unknown distribution furcts
pointing to the fluid zone at the boundaries nodesst be
specified. Concerning the no-slip boundary conditibounce
back boundary condition is used on the solid bortiedaln
Fig. 1.b the unknown distribution functions, whiebeds to be
determined, are shown as dotted lines. For instahee
unknown density distribution functions at the boarydeast
can be determined by the following conditions:
f4,n :f 2n

fG,n:f8n ' f7,n:.|:5,n ' (22)

b & 5
o ~
5 3 ; . Computational i .
! fioeeee Domain T
~ B ra
4 L 1 8
West . 1 East
3 i
/l\ South

Fig. 1b Boundary conditions Jwith unknown and knavates

The north and south of the boundaries are adialbla¢io
bounce back boundary condition is used on them.pEeature
at the west and east wall are known, in the we#t Wg, =1.0
and in the east wall EO. Since we are using D2Q9, the
unknowns distribution functions are, g, g at west wall
which are evaluated as follows:

9:=Ty(w+w)-g, (23a)
9s=Ty (ws+aw;)—g, (23b)
9s=Ty(wh+ws)—gs (23c)

And for east wall the unknowns distribution funciso
evaluated as follows:
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B. Effect of Rayleigh number on the streamline and
isotherm

Figs 2 and 3 show the isotherms and the strears fioe
Rayleigh numbers of £aand 18. As it is clear, results are in
good agreement with other methods for numericaigiyzing
turbulent flow in cavity. When Rayleigh number ieases, the
symmetry state wastes and the centralization o$titeamlines
in the core of the cavity tend the hot wall. Thethgansfer
process increases when Rayleigh number enhancds. Th
process is obvious where two isotherms of T=0.1 arty
move to the cold wall and the hot wall respectiveliien
Rayleigh number rises.

- 07 -
[\ \
\ o v
A . J
f\ 3 \J
i _ u.-l———:-JJ
(@ (b)

Fig. 2 The isotherms (a), The streamlines (b) far &

0.5

—

0.4

@ (b)
Fig. 3 The isotherms (a), The streamlines (b) far &Y
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Fig. 4 illustrates the values of the temperaturehmnaxial
midline for both Rayleigh numbers. It is obviousttthe value
enhances with the augmentation of Rayleigh numbbeseas
its state gets more stable by increase in Rayleighbers. The
cause of this phenomenon can be observed in thberso
counters which they became stable by the augmentatf
Rayleigh numbers.

Th-T¢

Tel

T

0 I I L L
0 0.2 0.4 0.6 0.8
X

Fig. 4 Temperature distribution at mid-height ofibafor different
Ra-values

Figs.5 and 6 show the local Nusselt number on dienall
and on the cold wall of the cavity respectively footh
Rayleigh numbers. The trend of the local Nussethlmer is
the same for various Rayleigh numbers and just tediles
increase by the augmentation of Rayleigh numbeis frend
demonstrates which the most difference of tempegait at
the bottom of the cavity whereas the convectioncess
doesn’t form completely. On the other hand, Figsnd 6
exhibits that the local Nusselt number on the hall and on
the cold wall have a symmetric manner which shohes t
accuracy of this method for solving this flow.

=== Ra=1EB
—— Ra=1E3

160

£ 1z0
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0 0.2 0.4 . 0.6 0.B 1

Fig. 5 Nusselt number distributions on the hot walRa=18and 16

200 |- —— Ra=1ER
= =ff}= = Ra=1ES

Fig. 6 Nusselt number distributions on the cold\eaRa=18 and

10°

IV. CONCLUSIONS

Turbulent natural convection in a square cavityclthare
filled with water by Pr=6.2 has been conducted mizady by
Lattice Boltzmann Method (LBM). This study has been
carried out for Rayleigh numbers of Ra=108 and 1A9.
proper validation with previous numerical investigas
demonstrates that Lattice Boltzmann Method is gr@piate
method for turbulent flows problems. The isothegas more
stable when Rayleigh numbers augment. The streasiinthe
core of the flow lose the symmetric state whichsexit low
Rayleigh numbers by increase in Rayleigh numbers.
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