Search results for: open queueing network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3491

Search results for: open queueing network

2321 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: Adaptive reuse, analytic network process, big data, land use strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
2320 An Approach for Reducing the Computational Complexity of LAMSTAR Intrusion Detection System using Principal Component Analysis

Authors: V. Venkatachalam, S. Selvan

Abstract:

The security of computer networks plays a strategic role in modern computer systems. Intrusion Detection Systems (IDS) act as the 'second line of defense' placed inside a protected network, looking for known or potential threats in network traffic and/or audit data recorded by hosts. We developed an Intrusion Detection System using LAMSTAR neural network to learn patterns of normal and intrusive activities, to classify observed system activities and compared the performance of LAMSTAR IDS with other classification techniques using 5 classes of KDDCup99 data. LAMSAR IDS gives better performance at the cost of high Computational complexity, Training time and Testing time, when compared to other classification techniques (Binary Tree classifier, RBF classifier, Gaussian Mixture classifier). we further reduced the Computational Complexity of LAMSTAR IDS by reducing the dimension of the data using principal component analysis which in turn reduces the training and testing time with almost the same performance.

Keywords: Binary Tree Classifier, Gaussian Mixture, IntrusionDetection System, LAMSTAR, Radial Basis Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2319 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
2318 TanSSe-L System PIM Manual Transformation to Moodle as a TanSSe-L System Specific PIM

Authors: Kalinga Ellen A., Bagile Burchard B.

Abstract:

Tanzania Secondary Schools e-Learning (TanSSe-L) system is a customized learning management system (LMS) developed to enable ICT support in teaching and learning functions. Methodologies involved in the development of TanSSe-L system are Object oriented system analysis and design with UML to create and model TanSSe-L system database structure in the form of a design class diagram, Model Driven Architecture (MDA) to provide a well defined process in TanSSe-L system development, where MDA conceptual layers were integrated with system development life cycle and customization of open source learning management system which was used during implementation stage to create a timely functional TanSSe-L system. Before customization, a base for customization was prepared. This was the manual transformation from TanSSe-L system platform independent models (PIM) to TanSSe-L system specific PIM. This paper presents how Moodle open source LMS was analyzed and prepared to be the TanSSe-L system specific PIM as applied by MDA.

Keywords: Customization, e-Learning, MDA Transformation, Moodle, Secondary Schools, Tanzania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
2317 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading

Authors: Danladi Ali, Onah Festus Iloabuchi

Abstract:

In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.

Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
2316 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network

Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem

Abstract:

In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.

Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2315 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2314 Dynamic Admission Control for Quality of Service in IP Networks

Authors: J. Kasigwa, V. Baryamureeba, D. Williams

Abstract:

The goal of admission control is to support the Quality of Service demands of real-time applications via resource reservation in IP networks. In this paper we introduce a novel Dynamic Admission Control (DAC) mechanism for IP networks. The DAC dynamically allocates network resources using the previous network pattern for each path and uses the dynamic admission algorithm to improve bandwidth utilization using bandwidth brokers. We evaluate the performance of the proposed mechanism through trace-driven simulation experiments in view point of blocking probability, throughput and normalized utilization.

Keywords: Bandwidth broker, dynamic admission control(DAC), IP networks, quality of service, real-time flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
2313 Auto-Parking System via Intelligent Computation Intelligence

Authors: Y. J. Huang, C. H. Chang

Abstract:

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Keywords: Auto-parking system, Fuzzy control, Neural network, Robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
2312 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: Metabolic network, gene knockout, flux balance analysis, microarray data, integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
2311 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series

Authors: M. H. Fattahi, H. Jahangiri

Abstract:

All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.

Keywords: river flow time series, fractal, river networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
2310 A Web Oriented Spread Spectrum Watermarking Procedure for MPEG-2 Videos

Authors: Franco Frattolillo

Abstract:

In the last decade digital watermarking procedures have become increasingly applied to implement the copyright protection of multimedia digital contents distributed on the Internet. To this end, it is worth noting that a lot of watermarking procedures for images and videos proposed in literature are based on spread spectrum techniques. However, some scepticism about the robustness and security of such watermarking procedures has arisen because of some documented attacks which claim to render the inserted watermarks undetectable. On the other hand, web content providers wish to exploit watermarking procedures characterized by flexible and efficient implementations and which can be easily integrated in their existing web services frameworks or platforms. This paper presents how a simple spread spectrum watermarking procedure for MPEG-2 videos can be modified to be exploited in web contexts. To this end, the proposed procedure has been made secure and robust against some well-known and dangerous attacks. Furthermore, its basic scheme has been optimized by making the insertion procedure adaptive with respect to the terminals used to open the videos and the network transactions carried out to deliver them to buyers. Finally, two different implementations of the procedure have been developed: the former is a high performance parallel implementation, whereas the latter is a portable Java and XML based implementation. Thus, the paper demonstrates that a simple spread spectrum watermarking procedure, with limited and appropriate modifications to the embedding scheme, can still represent a valid alternative to many other well-known and more recent watermarking procedures proposed in literature.

Keywords: Copyright protection, digital watermarking, intellectual property protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
2309 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
2308 A Dynamic Time-Lagged Correlation based Method to Learn Multi-Time Delay Gene Networks

Authors: Ankit Agrawal, Ankush Mittal

Abstract:

A gene network gives the knowledge of the regulatory relationships among the genes. Each gene has its activators and inhibitors that regulate its expression positively and negatively respectively. Genes themselves are believed to act as activators and inhibitors of other genes. They can even activate one set of genes and inhibit another set. Identifying gene networks is one of the most crucial and challenging problems in Bioinformatics. Most work done so far either assumes that there is no time delay in gene regulation or there is a constant time delay. We here propose a Dynamic Time- Lagged Correlation Based Method (DTCBM) to learn the gene networks, which uses time-lagged correlation to find the potential gene interactions, and then uses a post-processing stage to remove false gene interactions to common parents, and finally uses dynamic correlation thresholds for each gene to construct the gene network. DTCBM finds correlation between gene expression signals shifted in time, and therefore takes into consideration the multi time delay relationships among the genes. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae gene expression data and comparison with other methods indicate that it has a better performance.

Keywords: Activators, correlation, dynamic time-lagged correlation based method, inhibitors, multi-time delay gene network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2307 Codes beyond Bits and Bytes: A Blueprint for Artificial Life

Authors: Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq

Abstract:

The present study focuses on integrating Machine Learning and Genomics, hereafter termed ‘GenoLearning’, to develop Artificial Life (AL). This is achieved by leveraging gene editing to imbue genes with sequences capable of performing desired functions. To accomplish this, a specialized sub-network of Siamese Neural Network (SNN), named Transformer Architecture specialized in Sequence Analysis of Genes (TASAG), compares two sequences: the desired and target sequences. Differences between these sequences are analyzed, and necessary edits are made on-screen to incorporate the desired sequence into the target sequence. The edited sequence can then be synthesized chemically using a Computerized DNA Synthesizer (CDS). The CDS fabricates DNA strands according to the sequence displayed on a computer screen, aided by microprocessors. These synthesized DNA strands can be inserted into an ovum to initiate further development, eventually leading to the creation of an Embot, and ultimately, an H-Bot. While this study aims to explore the potential benefits of Artificial Intelligence (AI) technology, it also acknowledges and addresses the ethical considerations associated with its implementation.

Keywords: Machine Learning, Genomics, Genetronics, DNA, Transformer, Siamese Neural Network, Gene Editing, Artificial Life, H-Bot, Zoobot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
2306 Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks

Authors: M.K.Jeya Kumar

Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Keywords: Cluster nodes, end-to-end delay, QoS routing, routing protocols, sensor networks, least-cost-path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
2305 Graphical Approach for Targeting Work Exchange Networks

Authors: Hui Chen, Xiao Feng

Abstract:

Depressurization and pressurization streams in industrial systems constitute a work exchange network (WEN). In this paper, a novel graphical approach for targeting energy conservation potential of a WEN is proposed. Through constructing the composite work curves in the pressure-work diagram and assuming all of the mechanical energy of the depressurization streams is recovered by expanders, the maximum work target of a WEN can be determined via the proposed targeting steps. A WEN in an ammonia production process is used as a case study to illustrate the applicability of the proposed graphical approach.

Keywords: Expanders, Graphical approach, Pressure-work diagram, Work exchange network, Work target

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2304 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water

Authors: S. Areerachakul

Abstract:

Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.

Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
2303 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
2302 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
2301 Performance of Total Vector Error of an Estimated Phasor within Local Area Networks

Authors: Ahmed Abdolkhalig, Rastko Zivanovic

Abstract:

This paper evaluates the Total Vector Error of an estimated Phasor as define in IEEE C37.118 standard within different medium access in Local Area Networks (LAN). Three different LAN models (CSMA/CD, CSMA/AMP and Switched Ethernet) are evaluated. The Total Vector Error of the estimated Phasor has been evaluated for the effect of Nodes Number under the standardized network Band-width values defined in IEC 61850-9-2 communication standard (i.e. 0.1, 1 and 10 Gbps).

Keywords: Phasor, Local Area Network, Total Vector Error, IEEE C37.118, IEC 61850.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4147
2300 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.

In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3091
2299 Cost Optimized CO2 Pipeline Transportation Grid: A Case Study from Italian Industries

Authors: P Bumb, U Desideri, F Quattrocchi, L Arcioni

Abstract:

This paper presents the feasibility study of CO2 sequestration from the sources to the sinks in the prospective of Italian Industries. CO2 produced at these sources captured, compressed to supercritical pressures, transported via pipelines and stored in underground geologic formations such as depleted oil and natural gas reservoirs, un-minable coal seams and deep saline aquifers. In this work, we present the optimized pipeline infrastructure for the CO2 with appropriate constraints to find lower cost system by the use of nonlinear optimization software LINGO 11.0. This study was conducted on CO2 transportation complex network of Italian Industries, to find minimum cost network for transporting the CO2 from sources to the sinks.

Keywords: CCS, CO2, ECBM, EU, NAP, LINGO, UNMIG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2298 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter

Authors: Dipankar Dhabak, Soumya Pandit

Abstract:

This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.

Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2297 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
2296 Access Control System: Monitoring Tool for Fiber to the Home Passive Optical Network

Authors: Aswir Premadi, Mohammad Syuhaimi Ab. Rahman, Mohamad Najib Moh. Saupe, KasmiranJumari

Abstract:

An optical fault monitoring in FTTH-PON using ACS is demonstrated. This device can achieve real-time fault monitoring for protection feeder fiber. In addition, the ACS can distinguish optical fiber fault from the transmission services to other customers in the FTTH-PON. It is essential to use a wavelength different from the triple-play services operating wavelengths for failure detection. ACS is using the operating wavelength 1625 nm for monitoring and failure detection control. Our solution works on a standard local area network (LAN) using a specially designed hardware interfaced with a microcontroller integrated Ethernet.

Keywords: ACS, monitoring tool, FTTH-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
2295 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
2294 Comparative Analysis of Transient-Fault Tolerant Schemes for Network on Chips

Authors: Muhammad Ali, Awais Adnan

Abstract:

Network on a chip (NoC) has been proposed as a viable solution to counter the inefficiency of buses in the current VLSI on-chip interconnects. However, as the silicon chip accommodates more transistors, the probability of transient faults is increasing, making fault tolerance a key concern in scaling chips. In packet based communication on a chip, transient failures can corrupt the data packet and hence, undermine the accuracy of data communication. In this paper, we present a comparative analysis of transient fault tolerant techniques including end-to-end, node-by-node, and stochastic communication based on flooding principle.

Keywords: NoC, fault-tolerance, transient faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
2293 A Web Services based Architecture for NGN Services Delivery

Authors: K. Rezabeigi, A. Vafaei, N. Movahhedinia

Abstract:

The notion of Next Generation Network (NGN) is based on the Network Convergence concept which refers to integration of services (such as IT and communication services) over IP layer. As the most popular implementation of Service Oriented Architecture (SOA), Web Services technology is known to be the base for service integration. In this paper, we present a platform to deliver communication services as web services. We also implement a sample service to show the simplicity of making composite web and communication services using this platform. A Service Logic Execution Environment (SLEE) is used to implement the communication services. The proposed architecture is in agreement with Service Oriented Architecture (SOA) and also can be integrated to an Enterprise Service Bus to make a base for NGN Service Delivery Platform (SDP).

Keywords: Communication Services, SOA, Web Services, NGN, SLEE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
2292 An Open-Label Pilot Study of Efficacy and Safety of 2% Curcuma aeruginosa Roxb. Extract Cream in the Treatment of Mild to Moderate Facial Seborrheic Dermatitis

Authors: Kulaya Wimolwat, Panlop Chakravitthamrong, Neti Waranuch

Abstract:

Background: Seborrheic dermatitis is a common chronic skin condition affecting the face, scalp, chest, and trunk. The cause of seborrheic dermatitis is still unknown. Sebum production, lipid composition, hormone levels, and Malassezia species have been suggested as important factors in the development of seborrheic dermatitis. Curcuma aeruginosa Roxb. extract-containing cream with anti-inflammatory and anti-androgenic properties may be beneficial for treating mild to moderate facial seborrheic dermatitis. Objectives: We evaluated the efficacy and safety of 2% C. aeruginosa Roxb. extract-containing cream in the treatment of mild to moderate seborrheic dermatitis. Methods: This was a prospective, open-label, and non-comparative study. Ten adult patients clinically diagnosed with mild to moderate seborrheic dermatitis were enrolled in a four-week study. The 2% C. aeruginosa Roxb. cream was applied twice daily to a lesional area on the face for four weeks. The Scoring Index (SI) ranking system on days 14 and 28 was compared with that at baseline to determine the efficacy of treatment. The adverse events (burning sensation and erythema) were evaluated on days 14 and 28 to determine the safety of the treatment. Results: Significant improvement was observed in the reduction of the mean SI at day 14 (2.9) and 28 (1.4) compared to that at baseline (4.9). An adverse reaction was observed on day 14 (mild erythema 20% and mild burning sensation 10%) and was resolved by the end of the study. Conclusion: This open-label pilot study has shown that there was a significant improvement in the severity in these seborrheic patients and most reported they were satisfied with it. Reported adverse events were all mild.

Keywords: Anti-androgenic, antifungals, anti-inflammatory, Curcuma aeruginosa, seborrheic dermatitis, efficacy, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153