
Abstract—The notion of Next Generation Network (NGN) is

based on the Network Convergence concept which refers to

integration of services (such as IT and communication services) over

IP layer. As the most popular implementation of Service Oriented

Architecture (SOA), Web Services technology is known to be the

base for service integration. In this paper, we present a platform to

deliver communication services as web services. We also implement

a sample service to show the simplicity of making composite web

and communication services using this platform. A Service Logic

Execution Environment (SLEE) is used to implement the

communication services. The proposed architecture is in agreement

with Service Oriented Architecture (SOA) and also can be integrated

to an Enterprise Service Bus to make a base for NGN Service

Delivery Platform (SDP).

Keywords—Communication Services, SOA, Web Services,

NGN, SLEE.

I. INTRODUCTION

HE forthcoming trend of next generation networks, NGN,

is toward the integration of various types of traffic such as

voice, video, and data over packet networks. According to

ITU definition [2], NGN is governed by the following rules:

A packet-based network able to provide services,

including Telecommunication, and also capable to make use

of multiple broadband, QoS-enabled transport technologies.

In which Service-related functions are independent from

underlying transport-related technologies.

Offers unrestricted access by users to different service

providers.

Supports generalized mobility which will allow consistent

and ubiquitous provision of services to users.

NGN services will include session-based services, such as

IP telephony, videoconferencing, video chatting, and non-

session-based services such as video streaming and

broadcasting. NGN, for both public and enterprise

environments, will consist of converged networks, using fixed

and wireless, as well as circuit-switched and packet-switched

K. Rezabeigi is with the Department of Computer Science, University of

Isfahan, Isfahan, Iran (phone: +98 9125032810; e-mail:

K_Rezabeigi@eng.ui.ac.ir).

A. Vafaei is with the Department of Computer Science, University of

Isfahan, Isfahan, Iran (phone: +98 9125032810; e-mail:

Abbas_Vafaei@eng.ui.ac.ir).

N. Movahhedinia is with the Department of Computer Science, University

of Isfahan, Isfahan, Iran (phone: +98 9125032810; e-mail:

Naserm@eng.ui.ac.ir).

infrastructures. The key promise of NGN lies not only on the

ability to interconnect these diverse transport technologies, or

the potential cost reductions obtained by doing so, but also on

the ability to develop and deploy innovative services rapidly

and efficiently. So the NGN main idea focuses on the

“service” concept in two ways:

Independency and isolation of service layer from

transport layer.

Simplicity and efficiency of communication service

development, deployment, and delivery.

A critical ingredient for service introduction is the rapid

development of open Application Programming Interfaces

(APIs) that span diverse networks, allowing 3rd party

application developers to produce new services analogous to

the development of software in the Information technology

(IT) industry. In the past few years several industry efforts

have emerged to develop such open APIs, including JAIN SIP

[7], JAIN SLEE [8], and SIP Servlet [9]. These APIs help to

realize the first rule of NGN mentioned earlier, which implies

that communication services can be developed regardless of

lower layers technologies. However, realization of a Service

Delivery Platform requires more abilities such as Service

Discovery, Service Registration, and Service Management.

These capabilities rely on Service Oriented Architecture

(SOA) [4], so a service oriented telecom network is required

to satisfy the needs of service oriented telecom businesses

[11].

A Service Oriented Architecture (SOA) is an architectural

style whose goal is to achieve loose coupling among

interacting software components, and component behaviors

are defined completely by contracts and APIs. SOA

reorganizes existing software applications and component

units into a set of self-contained and self-describing services,

with standard interfaces and messaging protocols. These

services can be accessed without the need of traditional point-

to-point communications, based on different protocols. The

SOA paradigm allows the complex business processes and

transactions to be delivered as integrated services and let

applications be reused everywhere and by anybody.

A basic SOA includes three fundamental procedures:

Service Providing, Service Registry, and Service Client with

three important functions: Service Publishing, Service

Discovery, and Service Binding. SOA defines an interaction

between service clients and service providers. Providers are

responsible for publishing a description of the services.

A Web Services based Architecture for NGN

Services Delivery

K. Rezabeigi, A. Vafaei, N. Movahhedinia

T

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:7, 2008

1393International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
7,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
84

2.
pd

f

Clients should be able to find the description of services and

to bind them with proper connections.

Web Services technology is the most popular

implementation platform for SOA [6]. Web Services are

distributed software components which can be described,

published, discovered, and invoked with standard protocols.

Web Services communicate using XML and Web protocols,

which are pervasive, working both internally and across the

Internet. They support heterogeneous interoperability and use

SOAP for service calls, WSDL for service descriptions and

UDDI for service registration and discovery.

The idea behind this paper is to provide an appropriate

architecture to deliver the communication services as web

services in order to be used simply by web service clients in

converged applications. Web services are mostly supposed to

be accessed by a synchronous request-reply manner which

makes them simple to be implemented and used. In contrary,

communication services are asynchronous and event-driven in

nature. These types of services are delivered using a sequence

of send and receive messages. For example a web service like

search is accessed through a simple search request but a

communication service like Make-Call service requires a

sequence of event passing to be performed (Sending the

MakeCall event, receiving the proceeding, and alerting and

answering events and also exchanging the media capabilities

of call). So delivering a communication service as a

synchronous web service encounters some difficulties.

Some works have been done to integrate web and

communication services. Some of them suggest a service

oriented model for telecom service businesses [11], [14].

Some others use asynchronous web services to deliver the

telecom services such that the asynchronous nature and

complex requirements of these types of services are preserved

and also appears in service clients [13]. References [1], and

[12] try to make a replacement for call control protocols, such

as Session Initiation Protocol (SIP), using web services

protocols, translating SIP messages into proper SOAP

messages and defining a gateway between SIP and Web

services applications. This approach has two problems; firstly

the complexity of communication services is transferred to

client because of their event-based nature. Secondly complete

replacements for SIP protocols by SOAP messages are needed

such that most of SIP functionality be covered. Moreover, the

isolation of service layer and transport layer as mentioned in

NGN is not maintained. Furthermore, most of the mentioned

efforts are done based on SIP, and are not applicable to

protocol independent services and environments.

In this paper we try to propose a proper architecture to

deliver communication services as synchronous web services

in such a way that these services are independent of lower

layers and technologies such as call control protocols and

transport managements. In order to do so we first provide a

synchronous view of some of communication services, so that

they can be called in a synchronous manner, while they are

asynchronous in nature. We implement a simple call service

using this technique which can make a call between two SIP

user agents and have control on the call state to monitor,

change and terminate the call. The rest of this paper is

arranged as follows. Section 2 gives a brief overview of the

communication service, its definition and how it works.

Section 3 describes our overall architecture and describes the

major components and technologies to solve the problems

stated in section 1. Section 4 briefly describes the structure of

the web service. We end the paper with a brief summary and

conclude with a note on future works.

II. SERVICE CALL MODEL

As mentioned above we try to have a synchronous view of

communication services. For example any call control

protocol such as Make-Call service is asynchronous in SIP.

These protocols should be redefined in such a way that they

can be called in a synchronous manner. As can be seen in Fig.

1, we redefined this service as a communication service so

that it can be called synchronously. In a normal situation a SIP

user agent calls another one using an event passing sequence.

In our case, we have a simple client which can use the service

in a synchronous manner, (for example a web application,

which needs to initiate a call between two SIP UAs).

Therefore we need to have a service which acts an abstraction

between communication and web, or synchronous and

asynchronous environment. This service interacts

synchronously with its client and with communication

terminals or SIP UAs in an asynchronous manner.

During this scenario we need to focus on two goals. Firstly

interact with SIP UAs according to standard SIP Call message

sequence so that call be made correctly, and secondly

exchange media capabilities (SDP contents) between two SIP

UAs. These goals can be reached using the message sequence

is shown in Fig. 1.

Fig. 1 SIP message sequence of service

UA_

A

UA_

B
Service

INVITE offer1

200 answer1

INVITE

200 OK offer2

ACK

answer2

INVITE offer2'

RTP Media

ACK

200 answer2'

AC

K

Session A1

Session A2

Session B

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:7, 2008

1394International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
7,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
84

2.
pd

f

As can be seen, the main problem is to make an agreement

on session description between two SIP UAs. As shown

above, service can run a reasonable scenario of offer-answer,

compatible with Session Description Protocol (SDP) [5]

between two UAs. During running of above scenario, the

service and also call have some states and state changes that

are different from normal SIP call state machine. Service state

machine shows the state change of service, from initial state

until its final state. This differs from the call state machine but

depends on it. These two state machines are shown in Fig. 2.1

and 2.2 respectively.

Fig. 2.1 Service State Machine

Fig. 2.2 Call State Machine

III. ARCHITECTURE

The proposed architecture is to deliver the communication

service as synchronous Web Services and simplify its

integration into normal web services and web applications.

This architecture contains a telecom server, a web service

container, and a web server. Deployment view of this

architecture is shown in Fig. 3.

Fig. 3 Deployment view of proposed architecture

At first, a web service as an agent of a telecom service (for

example a Make-Call service) registers itself into a service

registry like UDDI. The main service use case starts from a

http client. This client can send a request to a web application

on a web server to execute a service. Web application will

find the suitable web services through UDDI protocol and

bind to it requesting a specified web service to be run. Web

service is a synchronous service but interacts with a telecom

service in an asynchronous way to initiate the communication

service. For doing so, it requires to interact with the service

using a message passing sequence. So service starts to run and

initiates a call between two SIP UAs according the scenario

described above. State of the call is exported to the web

service client and also http client so that they can control,

monitor and change the call (for example hold it), and also

terminate it at the end. This paper mainly focuses on the web

service and communication service and how they interact with

each other.

We use a SLEE (Service Logic Execution Environment) as

a telecom service container. A SLEE is a high throughput, low

latency event processing application environment. JSLEE [8]

is the Java standard API and component model for SLEE. The

JSLEE specification is designed so that implementations can

achieve scalability and availability through clustering

architectures and the point of integration for multiple network

resources and protocols. JSLEE has several components such

as Service Building Block (SBB), Resource Adaptor, Service,

and Event. SBB are reusable components that are sensitive to

specific events. They receive those events and handle them.

Each service is composed of some SBBs. Resource Adaptor

(RA) is a connector to connect the SLEE platform to a

specific protocol stack, such as SIP and ISUP RA. Events are

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:7, 2008

1395International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
7,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
84

2.
pd

f

defined messages that are exchanged between JSLEE

components.

In our proposed architecture we need to implement some

new type of these components. Firstly the web service

receives a request to initiate the service. It must start the

service through firing an event. So we need to define some

events that web service use to interact with JSLEE platform

and communication services. These events are:

- MakeCall (sipUri1, SipUri2)

- CancelCall(callId)

- TerminateCall(callID)

The web service will fire these events to JSLEE platform

and its components, so we need a specific Resource Adaptor

to receive event and deliver them to SBBs. We name it Call

Control Resource Adaptor (CCRA). In order to fire event

from web service to JSLEE application we use JMS

technology [10]. It is the asynchronous messaging technology

of J2EE platform. Our CCRA can be a JMS Listener

application that listens to a Message Queue for mentioned Call

Control (CC) messages. After that web service fires CC

messages to message queue, CCRA receives that as JMS

messages and then fire equivalent JSLEE events to JSLEE

event router. Event router then delivers them to those SBBs

that register for them. So we need a Call Control RA based on

JMS technology that relies on a message queue.

IV. IMPLEMENTATION

As mentioned above we have two state machines in our

service, call and service state machines. So we need two Sbbs,

one for each state machine. ServiceSbb registers for call

control events and CallSbb for SIP messages. Firstly when

MakeCall event delivered to SLEE, ServiceSbb is instantiated

and receives the MakeCall event , initiate call through sending

Invite message to SIP UA-A and instantiating CallSbb. After

this, CallSbb will work according to call scenario mentioned

above. It handles SIP messages in order to make a call

between two SIP UAs.

Web Service will have control on the call through sending

appropriate event such as CancelCall, TeminateCall to CCRA.

Another call control events also are delivered to ServiceSbb.

Handling of these events requires some SIP message passing

and so is in the scope of CallSbb. So Service Sbb delegate this

to CallSbb through calling some exported methods of CallSbb

that can terminate or cancel call via firing appropriate SIP

messages.

Another requirement in converging web and

communication application is to monitor the state of

communication services in the web applications. For example

in our case, we need to show the state of the call (for example

active, cancelled, on hold, or terminated states) in web

application so that user know about call and can control it.

The problem is that state change is occurred asynchronously

in the service and can be initiated by a resource other than

web application, and we should inform it about state change.

One solution is that state of call be a shared object between

communication service, web service and web application. So

web application can monitor service state. In addition, web

application requires call identifier (call id) to control and refer

to it.

To make a call we send a MakeCall event to SLEE and

have no return value. So event handler method can not return

call id. In order to solve this problem we use a guid (global

unique id) as id of the event. Then the ServiceSbb can save

call id with this guid key in a map that is shared between web

and communication service. So web application can have

access to call and its status. This guid is the id of call in the

web application and so must be accessible during a session.

So we need to save it in the session object as a session

attribute. Putting it in another way one can say that we have a

one-to-one mapping between HTTP and SIP sessions. The

implementation view of architecture is shown in Fig. 4.

Fig. 4 Implementation view of proposed architecture

V. WEB SERVICE STRUCTURE

In order to export our communication service as a web

service we should describe it in a WSDL document. Our

service will provide these operations to its clients:

- callGuid MakeCall(sipUri1, sipUri2);

- String getCallInfo(callGuid);

- cancelCall(callGuid);

- terminateCall(callGuid);

Our service description contains the detailed description of

the operations that are exported to clients. Here is part of

WSDL file that contains the description of our web services:

<wsdl:operation name="makeCall">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:7, 2008

1396International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
7,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
84

2.
pd

f

 </wsdl:output>

 <wsdl:fault name="ServiceException">

 <soap:fault name="ServiceException" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="PolicyException">

 <soap:fault name="PolicyException" use="literal"/>

 </wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getCallInfo">

 <soap:operation soapAction="" style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 <wsdl:fault name="ServiceException">

 <soap:fault name="ServiceException" use="literal"/>

 </wsdl:fault>

 <wsdl:fault name="PolicyException">

 <soap:fault name="PolicyException" use="literal"/>

 </wsdl:fault>

</wsdl:operation>

……

…….

As can be seen, MakeCall operation has two operands of

type string that are the SIP URIs of two SIP UAs, and a string

as the return value that is an id for referring to the call. The

getCallInof operation has one operand that is the guid of the

call and a string type return value that states the status of the

call.

VI. CONCLUSION

In this paper we had look at the convergence of

communication and web services as one of the NGN main

ideas, and the main differences between these two types of

services and also the problems encountered in accomplishing

the integration into a composite service. As mentioned, the

main difficulty arises from the synchronous nature of popular

web services and asynchronous nature of communication

services. We proposed an architecture, based on a different

point of view to some of communication services that make

them synchronous so that make it easy being delivered as a

synchronous web service. A sample MakeCall service is also

implemented and used in a web application as the proof of

architecture. This service is able to make a call between two

specified SIP UAs and then monitor the state of call and

control it. Implementation is based on JSLEE technology as a

telecom container. Architecture is protocol-independent but

we use SIP as signaling protocol to implement the sample

service. The proposed architecture is also in agreement with

the idea of Service Oriented Architecture (SOA) [4] in that:

Services (basic network capabilities, convergent services)

are independent from each other.

Services are open and scalable, which can be easily

converged, that is, added into, or deleted from another service

when needed.

Such service convergence process can be done anywhere

and anytime.

This work can be followed up by integrating our

architecture to an enterprise service bus (ESB) and making

some innovative and more complex composite services. ESB

can be a base for providing a Service Delivery Platform (SDP)

for communication services used in IP Multimedia

Subsystems (IMS).

REFERENCES

[1] Feng Liu, Wu Chou, Li Li and Jenny Li, “WSIP–Web Service SIP

Endpoint for Converged Multimedia/Multimodal Communication over

IP”, Proceedings of IEEE International Conference on Web Services

(ICWS’2004), July 2004.

[2] ITU, “Definition of Next Generation Network”, http://www.itu.int/ITU-

T/studygroups/com13/ngn2004 /working_definition.html.

[3] IETF, J. Rosenberg, et al., “SIP: Session Initiation Protocol”, RFC 3261,

June 2002.

[4] M. N. Huhns and M. P. Singh, “Service-oriented computing: key

concepts and principles,” IEEE Internet Computing, vol. 9, pp. 75-81,

Jan-Feb 2005.

[5] SDP: Session Description Protocol, http://www.ietf.org/rfc/rfc2327.txt.

[6] Web Service Architecture, W3C Working Draft,

http://www.w3.org/TR/2003/WD-ws-arch-20030808.

[7] Sun Microsystems, “JSR-000032 JAINTM SIP Specification”,

http://jcp.org/aboutJava/communityprocess/final/jsr032.

[8] Sun Microsystems, “JSR 22: JAINTM SLEE API Specification”,

http://jcp.org/en/jsr/detail?id=22.

[9] Sun Microsystems, “JSR 116: SIP Servlet API”,

http://jcp.org/en/jsr/detail?id=116.

[10] Sun Microsystems, “JSR 914: JavaTM Message Service (JMS) API”,

http://jcp.org/en/jsr/detail?id=914.

[11] Weifeng Lv Jianchu Kang Wei Chen Ran Lei, “Integration and

Application Platform of Service-Oriented Telecom Businesses”,

presented at Fourth European Conference on Universal Multiservice

Networks, ECUMN '07. , February 2007.

[12] Wu Chou Li Li Feng Liu , “WIP: Web Service Initiation Protocol for

Multimedia and Voice Communication over IP”, Avaya Labs Res.,

Basking Ridge, NJ, presented at International Conference on Web

Services, ICWS '06, September 2006.

[13] Wu Chou Li Li Feng Liu, “Web service enablement of

communication services”, Proceedings of IEEE International Conference

on Web Services (ICWS’2004), December 2005.

[14] Xinyu Wang, Jianchu Kang, “Service-oriented business integration and

management in telecom”, International Conference on Services Systems

and Services Management, Proceedings of ICSSSM, June 2005.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:2, No:7, 2008

1397International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
7,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
84

2.
pd

f

