Codes beyond Bits and Bytes: A Blueprint for Artificial Life
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Codes beyond Bits and Bytes: A Blueprint for Artificial Life

Authors: Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq

Abstract:

The present study focuses on integrating Machine Learning and Genomics, hereafter termed ‘GenoLearning’, to develop Artificial Life (AL). This is achieved by leveraging gene editing to imbue genes with sequences capable of performing desired functions. To accomplish this, a specialized sub-network of Siamese Neural Network (SNN), named Transformer Architecture specialized in Sequence Analysis of Genes (TASAG), compares two sequences: the desired and target sequences. Differences between these sequences are analyzed, and necessary edits are made on-screen to incorporate the desired sequence into the target sequence. The edited sequence can then be synthesized chemically using a Computerized DNA Synthesizer (CDS). The CDS fabricates DNA strands according to the sequence displayed on a computer screen, aided by microprocessors. These synthesized DNA strands can be inserted into an ovum to initiate further development, eventually leading to the creation of an Embot, and ultimately, an H-Bot. While this study aims to explore the potential benefits of Artificial Intelligence (AI) technology, it also acknowledges and addresses the ethical considerations associated with its implementation.

Keywords: Machine Learning, Genomics, Genetronics, DNA, Transformer, Siamese Neural Network, Gene Editing, Artificial Life, H-Bot, Zoobot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128

References:


[1] Garg R. (2021). Decoding Tomorrow: Traversing the Landscape of Artificial Life. Scholars Park. Available at: https://scholarspark. wordpress.com/2021/04/21/example-post-3/
[2] Garg, R. (2024) From Virtual World to Real Lives -1: Sculpting New Realities with ML, AI, and IoT. Taylor & Francis, Routledge, Oxfordshire, UK. 1-400.
[3] Garg, H. K. and Vyas, A. (2024) Exploring Genome Projects and Beyond - Untwining the Past, Present & Future for Transformative Applications | Aiming to Decode You. Zenodo. doi: 10.5281/ zenodo.10466512.
[4] Definition and supported options (no date) GFF/GTF File Format. Available at: https://asia.ensembl.org/info/website/upload/gff.html.
[5] Benhur, S. (2022) A friendly introduction to Siamese networks, Built In. Available at: https://builtin.com/machine-learning/siamese-network.
[6] Polymerase chain reaction (PCR) (no date) National Center for Biotechnology Information. Available at: https://www.ncbi.nlm.nih.gov/probe/docs/techpcr/.
[7] Denaturation (melting curve) and Renaturation of DNA (no date) Denaturation (Melting Curve) and Renaturation of DNA ~. Available at: https://www.biotechfront.com/2021/04/denaturation-and-renaturation-of-dna.html.
[8] Bulletti FM, Sciorio R, Palagiano A, Bulletti C. The artificial uterus: on the way to ectogenesis. Zygote. 2023 Oct;31(5):457-467. doi: 10.1017/S0967199423000175. Epub 2023 Jun 26. PMID: 37357356.
[9] Infrasound Sensor Technology (no date) NASA. Available at: https://technology.nasa.gov/patent/LAR-TOPS-106.
[10] Reneau, A. (2021) Tim storms, the guy with the world’s lowest voice, gives ‘bass’ a whole new meaning, Up-worthy. Available at: https://www.upworthy.com/tim-storms-lowest-voice-in-the-world.
[11] Kreithen, M.L., Quine, D.B. Infrasound detection by the homing pigeon: A behavioral audiogram. J. Comp. Physiol. 129, 1–4 (1979). https://doi.org/10.1007/BF00679906
[12] Zeyl JN, den Ouden O, Köppl C, Assink J, Christensen-Dalsgaard J, Patrick SC, Clusella-Trullas S. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships. Biol Rev Camb Philos Soc. 2020 Aug;95(4):1036-1054. doi: 10.1111/brv.12596. Epub 2020 Mar 31. PMID: 32237036.
[13] How powerful is a dog’s nose? (2020) Phoenix Veterinary Center - Veterinarian in Phoenix, AZ US. Available at: https://phoenixvetcenter. com/blog/214731-how-powerful-is-a-dogs-nose.
[14] Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, Renier C, Hitte C, André C, Fraser C, Galibert F. Compar-ison of the canine and human olfactory receptor gene repertoires. Genome Biol. 2003;4(12):R80. doi: 10.1186/gb-2003-4-12-r80. Epub 2003 Nov 28. PMID: 14659017; PMCID: PMC329419.
[15] Olender T., Fuchs T., Linhart C., Shamir R., Adams M., Kalush F., Khen M., and Lancet D., (2004) The canine ol-factory subgenome, Genomics, 83(3), pp. 361–372. doi: 10.1016/j.ygeno.2003.08.009.
[16] Kokocińska-Kusiak A., Woszczyło M., Zybala M., Maciocha J., Barłowska K., and Dzięcioł M., Canine Olfaction: Physiology, Behavior, and Possibilities for Practical Applications. Animals (Basel). 2021 Aug 21;11(8):2463. doi: 10.3390/ani11082463. PMID: 34438920; PMCID: PMC8388720.
[17] Liu, Y., Zhou, Q., Wang, Y. et al. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 6, 10033 (2015). https://doi.org/10.1038/ncomms10033.
[18] Correspondent, D. (2016) Why humans can’t walk up walls like Spiderman decoded, Deccan Chronicle. Available at: https://www.deccanchronicle.com/pets-and-environment/190116/why-humans-can-t-walk-up-walls-like-spiderman-decoded.html.
[19] Neimark, J. (2019). What is eagle eye vision? All About Vision. Available at: https://www.allaboutvision.com/resources/eagle-vision/.
[20] Gehring WJ. The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol. 2002 Jan;46(1):65-73. PMID: 11902689.
[21] Hasan, A. (2023). Humanoid Robots-Recent Developments & Human-Robot Interaction: A paper review. 10.13140/RG.2.2.19016.80641.