



Abstract—The present study focuses on integrating Machine
Learning and Genomics, hereafter termed ‘GenoLearning’, to develop
Artificial Life (AL). This is achieved by leveraging gene editing to
imbue genes with sequences capable of performing desired functions.
To accomplish this, a specialized sub-network of Siamese Neural
Network (SNN), named Transformer Architecture specialized in
Sequence Analysis of Genes (TASAG), compares two sequences: the
desired and target sequences. Differences between these sequences are
analyzed, and necessary edits are made on-screen to incorporate the
desired sequence into the target sequence. The edited sequence can
then be synthesized chemically using a Computerized DNA
Synthesizer (CDS). The CDS fabricates DNA strands according to the
sequence displayed on a computer screen, aided by microprocessors.
These synthesized DNA strands can be inserted into an ovum to initiate
further development, eventually leading to the creation of an Embot,
and ultimately, an H-Bot. While this study aims to explore the potential
benefits of Artificial Intelligence (AI) technology, it also
acknowledges and addresses the ethical considerations associated with
its implementation.

Keywords—Machine Learning, Genomics, Genetronics, DNA,
Transformer, Siamese Neural Network, Gene Editing, Artificial Life,
H-Bot, Zoobot.

I. INTRODUCTION

S modern technology advances into the territories once
confined to science fiction, the fusion of Genetic

Engineering and Artificial Intelligence opens doors to the next
step of advancement: creating Computerized Human-Bot
Entities (H-bots) and animal-bot entities (Zoobots) [1]. Coined
as ‘Genetronics’ by [2] and [3], this technology aims to
integrate the branch of Genomics with that of Artificial
Intelligence and Mechatronics, creating an entity that possesses
human-like physical, chemical, and biological attributes while
operating functionally as robots. Genomics, the study of an
organism's complete genetic makeup encoded in DNA, serves
as the foundation for this transformative leap.

During translation, three sets of nitrogenous bases of DNA,
known as codons, are responsible for gene expression via
protein synthesis. If the function of each of these codons is
worked out, attributes of an individual that correspond to their
genetic make-up can be manipulated. With the help of Machine
Learning and chemical synthesis processes, the creation of AL
may be possible using this concept. For instance, an individual
is required with the necessity of a particular trait ‘A’. ‘A’ is
coded by gene ‘X’. If this gene is not pre-existent or is under-

Rishabh Garg was with Birla Institute of Technology & Science - Pilani, KK

Birla Goa Campus 403726 India (corresponding author, phone: 91-916-526-
9669; e-mail: rishabhgargdps@gmail.com).

Anuja Vyas and Aamna Khan are with Institute for Excellence in Higher

expressed in a normal human genome, it can be sufficiently
expressed via artificial methods and thus enable the newly
created individual to possess this trait. If trait ‘B’ controlled by
gene ‘Y’ needs to be eliminated, the DNA can be designed such
that ‘Y’ is not expressed.

We suppose that a geneticist requires the creation of a human
entity that has an athletic build. To customize such a human, he
would first locate the position of genes responsible for good
athletics. Let it be called ‘the athlete gene’. Next, he needs to
edit the genome in order to sufficiently express the athlete gene
and then chemically synthesize it. Thereafter, he will require a
human ovum which comprises of all cytoplasmic factors
required for growth and development of a zygote. Since a
zygote is the product of fertilization, the term ‘Zybot’ can be
used to refer to the zygotic stage of the H-Bot. Similarly, the
embryo can be referred to as ‘Embot’.

II. PROPOSED METHODOLOGY

A. Gene Sequencing

In order to implement the concept, Sanger sequencing or
Next Generation Sequencing (NGS) methods like Pyro-
sequencing, Ion semiconductor sequencing, etc. would be
employed to determine the order of nucleotides within a DNA
molecule. Genomic files can be obtained after using any of the
present-day sequencing methods. For each chromosome of the
organism, separate files would be created and stored. File types
like GFF3 or GTF can be used to store these data for gene
annotation [4]. This would enable the demarcation of protein
coding and non-protein coding regions making it easier and
quicker to train the ML model based on TASAG.

B. Computerized Gene Sequencing

In case of the absence of a genetic sequence, AI can be used
to generate one using DNA sample of the organism. This can
be made possible by the use of Artificial Neural Networks
(ANNs), specifically Convolutional Neural Networks (CNNs)
that possess the ability to perform image classification. A CNN,
namely the classifier CNN, can be trained on dataset containing
NMR spectrum of each nitrogenous base. For this, the DNA
sample has to be put through NMR spectroscopy. The different
chromosomes can be isolated using separation techniques
followed by separate sequencing of each chromosome. To
demarcate the start position of the chromosome, either a radio-
labeled phosphate group can be associated with the 5’ end of

Education, Bhopal, M.P. 462016 India (e-mail: anujavyas20@gmail.com,
jhinu911@gmail.com).

Muhammad Azwan Tariq is with ULC Mechanical Engineering, University
College, London UK (e-mail: tariqazwan@gmail.com).

Codes beyond Bits and Bytes: A Blueprint for
Artificial Life

Rishabh Garg, Anuja Vyas, Aamna Khan, Muhammad Azwan Tariq

A

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

114International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

sequence or a primer specific to the first few nucleotides of the
DNA sequence can be de-signed and bound to it. In both cases,
a distinction in spectrum would be observed, due to difference
in magnetic properties, from the rest of the strand which would
mark the beginning of DNA strand. After obtaining the
sequence of each chromosome, algorithms like CYANA can be
applied to derive the molecular structure of this DNA sequence.
The classifier CNN can be trained on data containing molecular
structures of the four nitrogenous bases- Adenine, Guanine,
Thymine and Cytosine. Wherever the CNN detects the presence
of these molecules in the molecular structure sequence, it would
label the molecules as A, G, T or C respectively after having
compared the sample and training data. Thus, the model should
be able to classify molecular structures of Adenine, Guanine,
Thymine and Cytosine as ‘A’, ‘G’, ‘T’ and ‘C’ respectively
upon receiving the molecular structures derived from NMR
spectra of these molecules as inputs in a serial manner,
ultimately generating the gene sequence.

The process can be implemented as follows:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers, models

Step 1: Prepare dataset (NMR spectra of nitrogenous bases)

Prepare your dataset with NMR spectra and corresponding

labels (A, G, T, C)

Step 2: Design and train CNN classifier

def build_cnn_model(input_shape, num_classes):

model = models.Sequential([

layers.Conv1D(32, 3, activation='relu',

input_shape=input_shape),

 layers.MaxPooling1D(2),

 layers.Conv1D(64, 3, activation='relu'),

 layers.MaxPooling1D(2),

 layers.Conv1D(128, 3, activation='relu'),

 layers.MaxPooling1D(2),

 layers.Flatten(),

 layers.Dense(128, activation='relu'),

 layers.Dropout(0.5),

 layers.Dense(num_classes, activation='softmax')

])

 return model

Assuming data X_train and corresponding labels y_train are

being trained

input_shape = shape of your input NMR spectra data

num_classes = number of classes (4 for A, G, T, C)

input_shape = (num_features, num_timestamps) # Update with

actual shape

num_classes = 4 # A, G, T, C

model = build_cnn_model(input_shape, num_classes)

Compile the model

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

Train the model

model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_split=0.2)

Step 3: Classify DNA samples and generate gene sequence

def classify_dna_sample(model, dna_sample):

 # Assuming dna_sample is the NMR spectra of the DNA sample

 # Reshape the input according to the model input shape

 dna_sample = np.reshape(dna_sample, input_shape)

 # Make prediction

 prediction = model.predict(dna_sample)

 # Get the class with highest probability

 predicted_class = np.argmax(prediction)

 # Map predicted class to corresponding nucleotide

 nucleotides = ['A', 'G', 'T', 'C']

 gene_sequence = nucleotides[predicted_class]

 return gene_sequence

Example usage:

dna_sample_1 = ... # Load NMR spectra of DNA sample 1

gene_sequence_1 = classify_dna_sample(model, dna_sample_1)

Repeat above for each DNA sample to generate the complete

gene sequence

C. Gene Editing

Though gene editing can be performed by following
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR); CRISPR-Associated Protein 9 (Cas9);
Transcription Activator-Like Effector Nucleases (TALEN); or
Zinc-Finger Nucleases (ZFNs), yet gene editing appears much
more feasible if it is aided by AI. A neural network that can
compare two given sequences - one that the H-Bot would be
based-off of (target sequence) and the other that would carry the
gene required to be incorporated into the H-Bot (desired
sequence) - would be required in order to achieve this out-come.
SNNs are neural networks operating on different sub networks
that take an input each and compare them [5]. For the purpose
of sequence comparison, neural networks based on Transformer
Architecture specialized in the task of semantic similarity and
difference of Genetic sequences can be designed and used. Each
TASAG would take input sequences, for instance, Sequence
‘A’ which is the sequence that needs to be edited and
incorporated into the H-Bot (target sequence) and Sequence ‘B’
which is the sequence carrying the desired gene which needs to
be introduced in Sequence ‘A’ (desired sequence).
Chromosome files which carry the desired genes can be
selected and sent as input sequences for comparison to each
TASAG. The TASAG compares these sequences and draws out
differences between them. Since transformer architecture works
on attention mechanism, it can be made to focus on functional
sequences by weighing importance of protein coding regions
over that of non-protein coding regions. These neural networks
can be pre-trained on labeled data containing functional codons
and their expression proteins in order to recognize which region
of the sequence is responsible for that desired expression. Gene
annotation can be used to facilitate these functions.

Once a particular difference in the desired sequence from the
H-Bot sequence has been fetched out by TASAG, gene editing
can be performed on-screen to induce necessary mutation(s)
and introduce the desired gene(s) in that particular location of
chromosomal file of H-Bot.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

115International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

Fig. 1 Framework of TASAG

To implement the procedure described so far, one would
typically need a combination of tools and libraries such as
Python, TensorFlow or PyTorch for the neural network
implementation (using the Transformer architecture), and
possibly libraries like Biopython for handling genetic
sequences. Here is a simplified version of code through which
one could approach this implementation:

import torch

import torch.nn as nn

import torch.optim as optim

import numpy as np

from Bio import SeqIO

from Bio.Seq import Seq

Define the Transformer‐based neural network model

class TASAG(nn.Module):

 def __init__(self, input_size, output_size):

 super(TASAG, self).__init__()

 # Define layers and parameters of Transformer

architecture

 # Typically define transformer layers, attention

mechanisms, etc.

 def forward(self, x):

 # Implement forward pass of the model

 # Apply attention mechanisms, transformer layers, etc.

 return x

Load and preprocess sequences

def load_sequences(file_path):

 sequences = []

 with open(file_path, "r") as file:

 for record in SeqIO.parse(file, "fasta"):

 sequences.append(str(record.seq))

 return sequences

def preprocess_sequences(sequences):

 # Preprocess sequences as needed (e.g., tokenization,

padding)

 # May convert sequences into numerical representations

 return processed_sequences

Train the TASAG model

def train_model(model, train_data, train_labels, epochs=10,

batch_size=32):

 criterion = nn.CrossEntropyLoss()

 optimizer = optim.Adam(model.parameters(), lr=0.001)

 for epoch in range(epochs):

 running_loss = 0.0

 for i in range(0, len(train_data), batch_size):

 inputs = train_data[i:i+batch_size]

 labels = train_labels[i:i+batch_size]

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()

 optimizer.step()

 running_loss += loss.item()

 print(f"Epoch {epoch+1}, Loss: {running_loss}")

Perform sequence comparison and gene editing

def sequence_comparison_and_gene_editing(target_sequence,

desired_sequences):

 model = TASAG(input_size, output_size) # Initialize TASAG

model

 # Train the model using pre‐labelled data if available

 for desired_sequence in desired_sequences:

 # Use the trained model to compare sequences and

identify differences

 # Perform gene editing based on identified differences

 # For demonstration, let's assume a simple edit of

replacing a substring

 edited_sequence = target_sequence.replace("old_gene",

"new_gene")

 # Save or return edited sequence

 print("Edited sequence:", edited_sequence)

Example usage

if __name__ == "__main__":

 # Load sequences

 H_Bot_sequence = "ATCGATCGATCG..."

 desired_sequences =

load_sequences("desired_sequences.fasta")

 # Preprocess sequences

 processed_target_sequence =

preprocess_sequences([target_sequence])

 processed_desired_sequences =

preprocess_sequences(desired_sequences) //if ‘[]’ means that

target sequence is a sequence and thus stored in a list, it

should be ([desired sequences]) because both are lists.

 # Compare sequences and perform gene editing

sequence_comparison_and_gene_editing(processed_target_sequ

ence, processed_desired_sequences)

The given code provides a basic framework for

implementing sequence comparison and gene editing using a

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

116International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

Transformer-based neural network (TASAG). However, the
details of the TASAG model architecture, as well as any
additional preprocessing steps specific to the dataset and
requirements, have to be furnished separately.

Fig. 2 On-screen gene editing

D. Chemical Synthesis of Desired DNA Strand

Once the desired sequence has been obtained, DNA synthesis
needs to be performed in order to obtain the H-Bot in physical
form. For this purpose, a hypothetical ‘Computerized DNA
Synthesizer (CDS)’ can be used. Under controlled temperature
and pH, set concentrations of deoxyribonucleoside
triphosphates (dNTPs) are pipetted out to extend a DNA stand
as per the desired sequence.

A closed control loop system can be set in place in order to
implement this. The components include four vials that store
dNTPs namely deoxyadenosine triphosphate (dATP),
deoxyguanosine triphosphate (dGTP), deoxythymosine tri-
phosphate (dTTP) and deoxycytosine triphosphate (dCTP) with
a micropipette associated with each of them, a chamber with
synthesis plate that would accommodate the DNA strand during
synthesis with temperature and pH regulators as well as various
necessary enzymes, thus mimicking natural conditions of the
nucleus. To ensure that a precise concentration of dNTP is
pipetted out (for example, 50 µL of each dNTP of 10 mM
concentration as in PCR) or a desired range of temperature and
pH is maintained, a negative feedback closed loop control
system can be formulated. When the process of synthesis is
flanked, the first nitrogenous base displayed on screen causes
CDS micropipette, attached to robot arm, to pump out a set
concentration of that dNTP. This process continues until all 23
separate strands of DNA are synthesized. The physical DNA
strand thus synthesized can be alluded to as ‘artificial single
stranded DNA’ or ‘assDNA’.

In order to implement the process, a basic application in
Python code utilizing control structures and simulated actions
of the DNA synthesizer, is given hereunder:

import random

import time

class DNA_Synthesizer:

 def __init__(self):

 self.dNTP_concentration = {'dATP': 10, 'dGTP': 10,

'dTTP': 10, 'dCTP': 10} # mM

 self.temperature = 37 # Celsius

 self.pH = 7

 self.sequence = ""

 self.artificial_DNA = []

 def set_sequence(self, sequence):

 self.sequence = sequence

 def synthesis(self):

 for base in self.sequence:

 self.pump_dNTP(base)

 self.regulate_temperature_and_pH()

 time.sleep(0.5) # Simulating synthesis time

 self.extend_DNA_strand(base)

 print("Synthesizing", base, "...")

 print("DNA synthesis completed.")

 def pump_dNTP(self, base):

 concentration = self.dNTP_concentration['d' + base +

'TP']

 print("Pumping out", c oncentration, "µL of d" + base

+ "TP")

 def regulate_temperature_and_pH(self):

 print("Regulating temperature and pH...")

 def extend_DNA_strand(self, base):

 self.artificial_DNA.append(base)

if __name__ == "__main__":

 sequence = "ATCG" * 6 # Example sequence

 synthesizer = DNA_Synthesizer()

 synthesizer.set_sequence(sequence)

 synthesizer.synthesis()

 print("Synthesized DNA strand:",

''.join(synthesizer.artificial_DNA))

In order to match the DNA synthesis process, this code
initializes a DNA synthesizer object, sets the desired DNA
sequence, and then executes the synthesis process by iterating
over each base in the sequence, to simulate the pumping of
dNTPs, regulating the temperature and pH, and extending the
DNA strand. The code can be modified and expanded upon to
incorporate more complex functionalities if needed.

With a desired DNA sequence displaying on the computer
screen, the next step is for the machine to recognize the
sequence and draw specific volumes of dATP, dGTP, dTTP and
dCTP to place on the synthesis plate in a specific order. To do
this, the machine must correlate specific inputs to specific robot
arms that hold micropipettes corresponding to different dNTPs.
This is done by establishing links between inputs A, T, G and
C and microcontrollers such as an Arduino Board. This code
can tie distinct inputs to each individual actuator. For instance,
if ‘A’ is the next base in the DNA sequence, then robot arm ‘A’
will actuate to draw a specific volume of dATP and then place
it into the sequence.

One would need to connect the actuators and input pins to the
appropriate pins on the Arduino board, and adjust any necessary
delays or parameters based on the specific setup. Here is a
simple example code that demonstrates how one can achieve
this using Arduino:

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

117International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

Fig. 3 Overview of CDS

// Define the pins connected to the actuators (robot arms)

const int armAPin = 2; // Arm for dATP

const int armTPin = 3; // Arm for dTTP

const int armGPin = 4; // Arm for dGTP

const int armCPin = 5; // Arm for dCTP

// Define the input pins connected to the DNA sequence display

const int inputAPin = 6; // Input for A

const int inputTPin = 7; // Input for T

const int inputGPin = 8; // Input for G

const int inputCPin = 9; // Input for C

void setup() {

 // Set the pins as outputs for the robot arms

 pinMode(armAPin, OUTPUT);

 pinMode(armTPin, OUTPUT);

 pinMode(armGPin, OUTPUT);

 pinMode(armCPin, OUTPUT);

 // Set the pins as inputs for the DNA sequence display

 pinMode(inputAPin, INPUT);

 pinMode(inputTPin, INPUT);

 pinMode(inputGPin, INPUT);

 pinMode(inputCPin, INPUT);

}

void loop() {

 // Read the input pins to determine the next base in the DNA

sequence

 int inputA = digitalRead(inputAPin);

 int inputT = digitalRead(inputTPin);

 int inputG = digitalRead(inputGPin);

 int inputC = digitalRead(inputCPin);

 // If the next base is A, actuate arm A to draw dATP

 if (inputA == HIGH) {

 actuateArm(armAPin);

 }

 // If the next base is T, actuate arm T to draw dTTP

 else if (inputT == HIGH) {

 actuateArm(armTPin);

 }

 // If the next base is G, actuate arm G to draw dGTP

 else if (inputG == HIGH) {

 actuateArm(armGPin);

 }

 // If the next base is C, actuate arm C to draw dCTP

 else if (inputC == HIGH) {

 actuateArm(armCPin);

 }

 // Add any necessary delay between iterations

 delay(1000);

}

// Function to actuate the specified arm

void actuateArm(int armPin) {

 digitalWrite(armPin, HIGH); // Actuate the arm

 delay(1000); // Wait for arm to move (adjust delay as needed)

 digitalWrite(armPin, LOW); // Deactivate the arm

}

This code sets up four robot arms (actuators) corresponding
to dATP, dTTP, dGTP, dCTP, and correlates each input (A, T,
G, C) to a specific arm. When an input corresponding to a
particular base is detected, the corresponding arm is actuated to
draw the appropriate nucleotide and place it into the sequence.

Closed Loop Control System for CDS

This system ensures that desired volume of A, T, C or G
would be acquired for chemical synthesis of the DNA sequence.
The user would input a desired volume, for instance, 50 µL of
each base via the software that enables chemical synthesis for
desired sequence(s). This volume signal would then pass
through the machine’s controller, a microcontroller. Taking the
desired volume input into account, the controller will output a
control signal to the actuator, which can be a high accuracy
syringe pump, in order to draw a specific volume of the desired
base. Once a specific amount of dNTP is drawn, a volume
transducer/sensor will measure output of the actual volume
drawn and send a feedback signal to the input summing
junction. At this point, the desired input volume is compared to
the actual output volume and if any discrepancy between the
two is detected, an error signal is generated. This signal will
provide feedback into the controller and prompt it to activate
the actuators again to readjust output to the desired volume.
This system is quite dependable and its principles can be
applied to both temperature and pH control which would make
use of different sensors. Also, the time to reach a steady state
output can be altered via the utilization of a PID controller
which makes use of proportional, integral and/or derivative
constants to speed the time response in acquiring a specific
desired output.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

118International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

Fig. 4 Closed Control Loop System for CDS

Here is a simplified Python code to implement the process:

import time

class DNA_Synthesis_Controller:

 def __init__(self, base):

 self.base = base

 self.desired_volume = 0

 self.actual_volume = 0

 self.error_threshold = 0.1 # Adjust as needed

 self.actuator = SyringePump() # Initialize syringe

pump

 self.volume_sensor = VolumeSensor() # Initialize

volume sensor

 def set_desired_volume(self, volume):

 self.desired_volume = volume

 def compare_volumes(self):

 return abs(self.desired_volume ‐ self.actual_volume)

> self.error_threshold

 def adjust_output(self):

 while self.compare_volumes():

 if self.desired_volume > self.actual_volume:

 self.actuator.draw_volume(self.base,

self.desired_volume ‐ self.actual_volume)

 elif self.desired_volume < self.actual_volume:

 self.actuator.retract_volume(self.base,

self.actual_volume ‐ self.desired_volume)

 self.actual_volume =

self.volume_sensor.measure_volume(self.base)

class SyringePump:

 def draw_volume(self, base, volume):

 print(f"Drawing {volume} µL of {base}")

 time.sleep(1) # Simulate drawing volume

 def retract_volume(self, base, volume):

 print(f"Retracting {volume} µL of {base}")

 time.sleep(1) # Simulate retracting volume

class VolumeSensor:

 def measure_volume(self, base):

 volume = 50 # Placeholder for measured volume

 print(f"Measured {volume} µL of {base}")

 return volume

Example usage

controller = DNA_Synthesis_Controller("A")

controller.set_desired_volume(50)

controller.adjust_output()

This code simulates the process of drawing a desired volume

of a base (A, T, C, or G) using a syringe pump controlled by a
controller. The controller adjusts the output volume based on
feedback from a volume sensor until the desired volume is
reached.

Robot Arm of CDS

Within the machine, once the high accuracy pump draws in
specific amounts of a base, a robot arm with multiple joints will
maneuver the pipette to the exact location of the synthesized
DNA strand in order to add on to the sequence. In order for the
arm to recognize the precise location it needs to go to, it will
require a kinematic model and numerous sensors within each
joint that measure and sense parameters, such as angles and
angular accelerations of the joint.

To formulate a kinematic model, a world reference frame
would be placed on the rigid connection point at the base of the
robot arm. This is the frame from which positions of the end
effector will be determined. For instance, if we have a fixed 3-
D XYZ reference frame, we can then determine where the end
effector is along the X, Y and Z axes. As an example, the tip of
the pipette could be 0.05m along in the X axis, 0.02 m along the
Y axis and 0.01 m along the Z axis, providing a coordinate

vector of ൥
0.05
0.02
0.01

൩. At each subsequent joint a new reference

frame would be placed until the end effector, in our case the tip
of the pipette, is reached. Using these frames, Denavit-
Hartenberg (DH) parameters will be formed, which define the
geometry of how the center of each joint is related to the center
of its parent joint, for example, it includes angles and distances
between the axes of reference frame 1 to reference frame 2 in
order to derive the forward kinematic relationships.

Once DH parameters are characterized, the location of the
pipette can be determined via forward kinematics, which
effectively links each joint’s reference frame to the next via
homogenous transformation matrices that incorporate the
angles between the frames and the distance between their
origins. The standard form of such a matrix is shown in (1):

𝐻 ൌ ൤
𝑅 𝑑

0ଵ௫ଷ 1൨ (1)

where R = rotation matrix, d = displacement from origin of
frame 1 to frame 2 in the X, Y and Z directions. As an
illustration, using Fig. 5, the transformation matrix between the
world frame and Joint 1 frame would be:

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

119International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

𝐻 ൌ ൦

cosሺ𝜃ଵሻ െ sinሺ𝜃ଵሻ 0 𝑎ଵ cosሺ𝜃ଵሻ
sinሺ𝜃ଵሻ cosሺ𝜃ଵሻ 0 𝑎ଶ sinሺ𝜃ଵሻ

0 0 1 0
0 0 0 1

൪

Using forward kinematics, we can find the relationships

needed for inverse kinematics. Inverse kinematics is the process
of determining the joint angles required to place the end effector
(pipette) at a desired position. The Jacobian Inverse Method can
be used for this, which involves an algorithm that iteratively
guesses and adjusts the joint angles until the end effector
reaches the desired position.

To summarize, if the pipette needs to be at location A, the
robot arm joints can form angles θ1 to θn (n being the number
of joints) with respect to each joint reference frame to orient the
robot arm to the desired position. With sensors such as rotary
encoders, which are used to measure the angular position of a
joint, or accelerometers and gyroscopes that provide additional
information on joint orientation and movement, a closed loop
negative feedback system can be used to output desired robot
joint parameters with high accuracy sensors to ensure dNTP is
placed exactly where it needs to be and with fast responses.

Fig. 5 Robot arm of CDS

Here's a high-level execution of the process:

//forward kinematics to be added before inverse kinematics, preferable
to add code calculating transformation matrix, further changes as per
theory may be added (if needed)

class RobotArm:

 def __init__(self, num_joints):

 self.num_joints = num_joints

 self.joint_angles = [0] * num_joints

 self.joint_velocities = [0] * num_joints

 self.joint_accelerations = [0] * num_joints

 self.sensor_data = {}

 def update_sensor_data(self, sensor_data):

 self.sensor_data = sensor_data

 def calculate_inverse_kinematics(self, target_position):

 # Use sensor data and DH parameters to calculate joint

angles

 # This function would implement the inverse kinematics

model

 # Placeholder for demonstration purposes

 joint_angles = [0.5, ‐0.3, 0.8] # Example joint angles

 return joint_angles

 def move_to_position(self, target_position):

 self.joint_angles =

self.calculate_inverse_kinematics(target_position)

 def feedback_control(self, target_angles):

 # Implement a closed‐loop feedback control system

 # This could involve using sensor data to adjust joint

angles to reach target angles

 # Placeholder for demonstration purposes

 self.joint_angles = target_angles

 def add_dNTP(self, location):

 # Perform the motion to add dNTP to the desired

location

 self.move_to_position(location)

 # Placeholder for adding dNTP to the DNA strand

 print("dNTP added at location:", location)

Example usage

if __name__ == "__main__":

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

120International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

 num_joints = 3 # Example number of joints

 robot_arm = RobotArm(num_joints)

 # Example sensor data (could be rotary encoder readings,

accelerometer data, etc.)

 sensor_data = {

 "joint1_angle": 0.5,

 "joint2_angle": ‐0.3,

 "joint3_angle": 0.8,

 # Additional sensor data as needed

 }

 robot_arm.update_sensor_data(sensor_data)

 # Example target position

 target_position = {

 "x": 0.02,

 "y": 0.05,

 "z": 0.01,

 }

 # Move the robot arm to the target position

 robot_arm.move_to_position(target_position)

 # Add dNTP at the target location

 robot_arm.add_dNTP(target_position)

While providing a basic structure for a robot arm with
multiple joints, this implementation includes functions for
updating sensor data, calculating inverse kinematics, moving to
a specified position, and adding dNTP at a specified location.

Complementary Strand Synthesis

The natural state of DNA in the nucleus is double stranded
and helical. Both strands of DNA are complementary to one
another and are called template and coding strands. The single
strand that has been used for artificial synthesis by CDS is the
coding strand as it carries majority of genetic information. To
synthesize the complementary template strand, wherever ‘A’ is
present in the coding strand, ‘T’ needs to be attached on
template and wherever ‘G’ is present, ‘C’ needs to be attached
and vice versa. For this task, DNA polymerase, primers and
dNTPs can be directly used in a pH and temperature-controlled
environment, similar to Polymerase Chain Reaction (PCR) [6].
The only difference here is that instead of denaturation,
renaturation needs to be performed. For renaturation, gradual
lowering of temperature is a prerequisite [7].

E. Insertion of Target Strand into an Ovum for Development

In order to grow the adsDNA obtained into a functional H-
Bot, it requires a cell and cytoplasmic factors. Both these
cellular parts can be provided by an ovum or female sex gamete.
First, the ovum cell is enucleated, either naturally or artificially,
in order to isolate its nucleus. If a natural ovum is used, all the
genetic material present in the nucleus can be degraded and
adsDNA can be inserted via microinjection. If an artificial
ovum is used, it can be equipped with a hollow nucleus to
incorporate adsDNA. Once the synthesized adsDNA strands are
inserted into this nucleus, the diploid egg can be stimulated to
cleave and develop under artificial conditions. The
development and maturation of zygote take place within ovum
cytoplasm as all factors necessary to support its growth are
present in it. The initial stage of ovum containing adsDNA can

be referred to as ‘Zybot’ and once multicellular development
stage is reached, it can be called ‘Embot’. This has been
conceptualized while carrying the assumption that the nucleus
of human ovum is comparatively larger in size and can
accommodate female as well as male genetic material at the
time of fertilization. Hence, the nucleus would be able to
withstand insertion and contain this artificial genome.

Fig. 6 Complementary strand synthesis

The Zybot, so created, can thereafter be placed under suitable
developmental conditions in vitro for complete ectogenesis [8]
to obtain a developed H-Bot baby. Here's a Python code to
create instance of ovum, enucleate it, insert ad-sDNA, add
cytoplasmic factors, stimulate cleavage, and develop the Zybot:

class Ovum:

 def __init__(self, artificial=False):

 self.artificial = artificial

 self.nucleus = None

 self.cytoplasmic_factors = []

 def enucleate(self):

 self.nucleus = None

 def insert_adsDNA(self, adsDNA):

 if self.artificial:

 self.nucleus = "Hollow nucleus with adsDNA"

 else:

 self.nucleus = adsDNA

 def add_cytoplasmic_factors(self, factors):

 self.cytoplasmic_factors.extend(factors)

 def stimulate_cleavage(self):

 if self.nucleus is not None and

self.cytoplasmic_factors:

 print("Stimulating cleavage...")

 # Cleavage process

 print("Cleavage stimulated successfully.")

 else:

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

121International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

 print("Failed to stimulate cleavage. Nucleus

and/or cytoplasmic factors missing.")

 def develop_zybot(self):

 if self.nucleus is not None and

self.cytoplasmic_factors:

 print("Developing Zybot...")

 # Zybot development process

 print("Zybot developed successfully.")

 else:

 print("Failed to develop Zybot. Nucleus and/or

cytoplasmic factors missing.")

Example usage:

Create an artificial ovum

artificial_ovum = Ovum(artificial=True)

Enucleate the ovum

artificial_ovum.enucleate()

Insert adsDNA into the ovum

adsDNA_sequence = "ACGTACGT"

artificial_ovum.insert_adsDNA(adsDNA_sequence)

Add cytoplasmic factors

cytoplasmic_factors_list = ["Factor1", "Factor2", "Factor3"]

artificial_ovum.add_cytoplasmic_factors(cytoplasmic_factors_l

ist)

Stimulate cleavage

artificial_ovum.stimulate_cleavage()

Develop Zybot

artificial_ovum.develop_zybot()

III. CUSTOMIZABLE ORGANISMS

Gene editing and chemical synthesis of DNA are crucial
processes that can be used to create H-Bots which have the
ability to perform functions that are near to impossible for
normal human beings. A few of these applications are:

A. Infrasonic Communication

Infrasonic communication involves producing and
perceiving sound waves with frequencies below 20 Hz. While
humans cannot naturally generate or sense infrasonic sounds
due to our hearing range of 20 to 200 Hz, they can be valuable
for detecting distant noises, traveling hundreds of miles [9].

Infrasonic voice production can be made possible with the
help of longer vocal cords. A good example of this is the
American singer and composer - Tim Storms who can produce
notes with frequency as low as 0.189 Hz. His exceptional ability
stems from his vocal cords that are twice the length of an
average human with increased muscular flexibility [10]. Genes
responsible for this mutation can be worked out and induced in
the genome of H-Bot at the step of gene editing.

Infrasound is produced by animals such as elephants, whales,
rhinos, pigeons, etc. Out of these, pigeons can hear the lowest
frequency of infrasound i.e., around 0.05 Hz in a sound
isolation chamber [11]. While the precise workings of the
pigeon ear remain incompletely understood, it is conjectured

that several factors, including the ability to filter environmental
infrasound, the low stiffness of the middle and inner ear in
pigeons facilitating efficient transmission, and the presence of
infrasonic-sensitive neurons in the basilar papilla, contribute to
infrasound perception in pigeons [12]. Proteins and thus genes
responsible for such modifications can be worked out in the
pigeon genome and used to re-place those in human genome by
the process of gene editing.

B. Enhanced Olfaction

Organisms possess olfaction, enabling them to perceive
smells. Dogs, in particular, exhibit an exceptional olfactory
sense, surpassing that of humans by a significant margin. They
have around five folds more olfactory receptors in their noses
than humans and a fold of tissue in their nose that separates the
function of inhalation and olfaction [13]. They can detect
bombs, drugs, cancer, etc.

Gene clusters governing olfaction in both humans and dogs
are orthologous [14]. However, dogs possess certain features
due to which their sense of smell is significantly more powerful
than humans. These are: higher number of olfactory receptors,
more surface area of olfactory epithelium incorporating more
neurons, larger brain region responsible for perception of smell,
etc. In dogs, there are estimated to be around 800 to 1,000
different olfactory receptor genes, making up a significant
portion of their genome [15]. These genes are highly diverse
and can detect a wide range of odors, allowing dogs to have an
incredibly acute sense of smell compared to humans [16]. These
genes can be recognized and thus introduced in H-Bot genome.

C. Adhesive Capability

Geckos are reptiles that possess unique specialized
appendages allowing them to cling to any surface via adhesive
foot pads. These foot pads consist of millions of hair-like tiny
setae and each possess several spatulae. These reptiles contain
β-keratin genes that have been associated with gecko’s adhesive
ability. It has been found that these β-keratin genes have
undergone major expansion via duplication. These gene
expansions can be further studied and either introduced or
triggered within H-Bot genome. Since geckos have existed
around millions of years [17], it is very likely that such genes
are present as non-protein coding regions within the human
genome. Moreover, for the H-Bot to have an efficient adhesive
climbing ability, around 80% of its anterior body surface needs
to be covered with setae. Since an adult human has a lower body
surface, the H-Bot can be made infant-sized (< 10 kg) [18]. The
calculations have been shown below.

Preferable regions to be covered by setae: Anterior torso,
each arm and each leg, with surface areas 16%, 8% each and
16% each.

%Total body surface area (TBSA) = %SA of Anterior torso + %SA

of arms + %SA of legs = 16% + 16% + 32% = 64%

To further increase surface area, one can decrease mass or
incorporate additional accessory appendages such as patagium
or extra integumentary folds.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

122International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

class H_Bot:

 def __init__(self, weight):

 self.weight = weight

 def calculate_surface_area(self):

 # Assuming the infant‐sized H‐Bot

 torso_surface_area = 0.16 # 16% of total body surface

area

 arm_surface_area = 0.08 # 8% each

 leg_surface_area = 0.16 # 16% each

 total_surface_area = torso_surface_area + 2 *

arm_surface_area + 2 * leg_surface_area

 return total_surface_area

 def calculate_required_setae_area(self,

total_surface_area):

 required_setae_area = 0.8 * total_surface_area # 80%

coverage

 return required_setae_area

 def adjust_surface_area(self, total_surface_area,

required_setae_area):

 # Adjust surface area by decreasing mass or

incorporating additional appendages

 # For simplicity, let's assume no mass reduction or

additional appendages

 return total_surface_area

 def implement_setae(self, total_surface_area):

 # Implement setae coverage efficiently

 setae_area_covered = total_surface_area # For

demonstration, assuming full coverage

 return setae_area_covered

Main function

def main():

 h_bot_weight = 10 # Assuming weight < 10kg for infant‐

sized H‐Bot

 h_bot = H_Bot(h_bot_weight)

 total_surface_area = h_bot.calculate_surface_area()

 required_setae_area =

h_bot.calculate_required_setae_area(total_surface_area)

 total_surface_area =

h_bot.adjust_surface_area(total_surface_area,

required_setae_area)

 setae_area_covered =

h_bot.implement_setae(total_surface_area)

 print("Total surface area of H‐Bot:", total_surface_area)

 print("Required setae area for 80% coverage:",

required_setae_area)

 print("Actual setae area covered:", setae_area_covered)

if __name__ == "__main__":

 main()

This code calculates the total body surface area of the H-Bot,
determines the required setae area for 80% coverage, adjusts the
surface area if needed, and implements the setae coverage.

D. Visibility Enhancement

Eagles are known to have one of the best visions in the
animal kingdom. They have a 20/5 vision as compared to 20/20

human vision. They also have features like the presence of 2
foveae in each eye with over a million cone cells in their central
fovea. They also have the ability to ‘zoom in’ their prey as they
have lenses that can change shape to focus on an object with
accuracy [19]. Moreover, the universal master control gene for
eye morphogenesis, the Pax 6 gene, is conserved for all
organisms [20]. Thus, the differences between human and eagle
eye genes can be worked out, and the same may be incorporated
into the H-Bot genome for better vision. This would prove more
effective if genes for associated morphological and
physiological changes such as larger eye size and the reflective
layer behind the retina could also be identified and
incorporated. In addition, genes related to UV light-sensitive
'opsin' can also be introduced into the H-Bot genome through
gene editing to capture and sense UV light. Furthermore, if
certain mutations can be induced in genes related to vision, such
as induction of new photoreceptors sensitive to radio waves, the
ability to sense these radio wave signals in the brain could be
induced and mechanisms that allow them to pass through
artificial filters. By filtering out atmospheric refraction or
designing telescopic retinas, it may be possible for the H-Bot to
see galaxies that are billions of light years away from Earth's
surface.

E. Flyers Overcoming Barriers of Flight and Visibility

Birds can be designed to fly without energy and visibility
constraints. These changes can be brought about to create a
‘watchdog’. The former could be made possible by increasing
the efficiency of respiration since sustained flight would require
higher energy. This can be achieved by making necessary
mutations in the genes of birds responsible for high lung
efficiency. These genes can be mutated to create larger lungs to
increase oxygen intake. Furthermore, their flight muscles have
to be well developed so that they do not succumb to frequent
fatigue. For this, the proteins involved in muscle contraction –
actin, myosin etc. will have to be increased. This can be done
by performing corresponding mutations. These factors can help
the bird-bot to fly for miles and record essential data which can
be accessed through sensors in the brain.

F. Organisms from de Novo Proteins

Plastic waste and oil spills are a major threat to the
environment. It is the need of the hour to design proteins that
are capable of breaking down these wastes and thus cleaning
the ecosystem. Amino acid sequences for proteins capable of
performing the said functions can be designed and reverse
translation can be performed to obtain the respective mRNA
strand. Furthermore, reverse transcription can then ultimately
produce the DNA strand which can be used to synthesize
organisms capable of producing proteins under suitable
conditions to perform such functions. These proteins can be
designed to be crucial in the metabolism of these ‘bio-
sweepers’.

IV. DISCUSSION

The fusion of Artificial Intelligence with genetics has the
potential to transmute the lives of living beings. This integration

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

123International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

enables them to create or even replace their own selves. The
present study opens vistas to the creation of H-bots - AL forms
- a subject currently sparking fervent discussion and debate.
This stands in contrast to earlier researches focused on
humanoid robots, which are programmable machines that
resembles human in its build or functionality [21].

The current concept of creating H-bots stems from human
curiosity that may be traced back to Garg (2021-24) [1].
‘Human bots’ (H-bots) are biologically engineered entities
designed to closely resemble and function as humans. This
curiosity-driven pursuit extends to the creation of other life
forms: ‘Zoobots’ (Z-bots) for animals, A-bots for aves or birds,
B-bots for plants, and M-bots for microorganisms. Despite
lacking inherent life, these entities are seen to be perfect mimics
of live matters, full of potential [2].

The current study builds on prior research [3] by expanding
upon the idea and offering a detailed exploration of its practical
application. The present study explores it more deeply and
attempts to provide a more thorough framework involving,
extracting the sequence from the sample, aligning the sequence
on the system, comparing it to the target sequence, modifying
the target sequence, inserting it into the ovum, and eventually
its development.

Studies [1]-[3], and the present research offer promising new
concepts that could represent significant breakthroughs in the
field of biotechnology. Nevertheless, it is essential to consider
both the potential benefits and drawbacks of such an
advancement.

A. Merits

(i) Abandon animal testing: This study aims to eradicate
animal testing across various research domains, including
vaccine development, cosmetics, and medications. By
doing so, we can halt the unethical practice of subjecting
defenseless animals to experimentation while upholding
animal welfare standards.

(ii) Tailored characteristics for specific tasks: The upcoming
H-bot will boast enhanced functionalities tailored for
specific tasks, potentially reducing the reliance on both
human labor and machines lacking human-like abilities.
For instance, in modeling scenarios, H-bots can be
designed with desirable physical attributes and a congenial
demeanor.

(iii) Pharmaceutical and vaccine testing surrogate: Current
trials often involve animals at various stages, leading to
inefficiencies and adverse outcomes due to species
differences. To circumvent these challenges, H-bots can be
subjected to experimentations and trials, and can yield
accurate and comprehensive results. Furthermore, tailored
experiments can ascertain optimal dosages and effects of
medications, considering variables like height, weight,
gender, and age among others.

(iv) Organ and biological sample collection: Utilizing H-bots
that meet necessary standards and patient compatibility
criteria, one can engineer H-bots to isolate organs suitable
for transplantation. Their versatility extends to collecting

blood and its components, liver segments, extremities, and
more.

(v) Research Advantages and Associated Studies: Human
subjects pose limitations due to social constraints and
ethical considerations. In contrast, non-personal entities
like H-bots offer opportunities for expansive and
transformative research without such barriers.

B. Demerits

(i) Social and ethical issues: The creation of such beings
challenges the very concept of ‘ethics.’ The social
ramifications of H-bots, including their acceptance in
society, code of behavior, accountability, and human-H-
bot contact, are a cause for serious concern.

(ii) Threat to human expertise: H-bots, adept at specific tasks,
pose a potential threat to human expertise. If left
unchecked, this trend could lead to severe consequences,
overshadowing human involvement.

(iii) Loss of human dignity: Despite being artificial, H-bots bear
striking resemblance to humans, potentially compromising
human dignity. Interactions between humans and H-bots
could disrupt regular social dynamics, impacting
interpersonal relationships significantly.

(iv) Accountability and responsibility: The absence of
ownership over H-bots presents a clear accountability
challenge. Failure to address this issue could escalate into
a significant problem. If these entities display inappropriate
behavior or engage in unforeseen activities, prompt action
is crucial. To address these issues, it is essential to set up a
monitoring organization, keep updated records of their
activities and locations, and ensure accountability.

(v) Risk of new species development: It is widely
acknowledged that advanced technology could yield H-
bots mirroring humans, albeit with intentionally designed
traits. These H-bots may potentially reproduce among
themselves and/or with humans, posing a significant threat
to the natural equilibrium.

(vi) Creation and misuse of bizarre or extraordinary H-Bots:
There is a possibility of introduction of unusual traits into
H-Bots or gene mutations which may arise during the H-
bot development process. Formation of such H-Bots can
result in detrimental consequences which could be beyond
the control of its developers.

Despite being entirely conceptual, this research serves as a
critical foundation for understanding the potential of the idea
and its implications. With thorough analysis, it clarifies the
potential results and impacts of deploying such technology. It
delineates both favorable aspects - such as effective testing and
integration of desired traits - and adverse consequences - such
as ethical dilemmas and inherent risks. This holistic strategy
underscores the significance of ad-dressing challenges and
constraints, while also accentuating potential benefits. In
essence, despite its theoretical nature, this research significantly
contributes to our comprehension and decision-making about
the adoption and advancement of this technology.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

124International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

V. CONCLUSION

With the advent of novel and powerful technologies like
Neural Networks as well as advancements in the field of
Genomics, it is necessary to integrate these domains in order to
achieve new advanced technologies such as AL. It has been
observed that changes in an organism’s functioning require
changes in morphological, anatomical and neural structures
related to it, which ultimately require changes in its genome.
There has been a growing prevalence and rapid evolution of
gene sequencing technologies, which makes the process of gene
editing via use of artificial intelligence possible to implement.
Software that aids in machine designing has accelerated
development in areas such as mechatronics, giving birth to
advancements in robotics. Integration of Mechatronics with
Genomics is another asset contributing to AL which can be used
for physical synthesis of gene, the code of life. Further research
is necessary in order to elevate the possibilities of AL or to
derive valuable insights from related researches to produce
innovations that may contribute to aiding humanity. However,
it needs to be ensured that such technologies and innovations
do not prove to be detrimental in the long run. Necessary ethical
considerations and arguments need to be re-iterated and
enunciated so as to prevent foreseeable adverse effects.

REFERENCES
[1] Garg R. (2021). Decoding Tomorrow: Traversing the Landscape of

Artificial Life. Scholars Park. Available at: https://scholarspark.
wordpress.com/2021/04/21/example-post-3/

[2] Garg, R. (2024) From Virtual World to Real Lives -1: Sculpting New
Realities with ML, AI, and IoT. Taylor & Francis, Routledge,
Oxfordshire, UK. 1-400.

[3] Garg, H. K. and Vyas, A. (2024) Exploring Genome Projects and Beyond
- Untwining the Past, Present & Future for Transformative Applications |
Aiming to Decode You. Zenodo. doi: 10.5281/ zenodo.10466512.

[4] Definition and supported options (no date) GFF/GTF File Format.
Available at: https://asia.ensembl.org/info/website/upload/gff.html.

[5] Benhur, S. (2022) A friendly introduction to Siamese networks, Built In.
Available at: https://builtin.com/machine-learning/siamese-network.

[6] Polymerase chain reaction (PCR) (no date) National Center for
Biotechnology Information. Available at:
https://www.ncbi.nlm.nih.gov/probe/docs/techpcr/.

[7] Denaturation (melting curve) and Renaturation of DNA (no date)
Denaturation (Melting Curve) and Renaturation of DNA ~. Available at:
https://www.biotechfront.com/2021/04/denaturation-and-renaturation-
of-dna.html.

[8] Bulletti FM, Sciorio R, Palagiano A, Bulletti C. The artificial uterus: on
the way to ectogenesis. Zygote. 2023 Oct;31(5):457-467. doi:
10.1017/S0967199423000175. Epub 2023 Jun 26. PMID: 37357356.

[9] Infrasound Sensor Technology (no date) NASA. Available at:
https://technology.nasa.gov/patent/LAR-TOPS-106.

[10] Reneau, A. (2021) Tim storms, the guy with the world’s lowest voice,
gives ‘bass’ a whole new meaning, Up-worthy. Available at:
https://www.upworthy.com/tim-storms-lowest-voice-in-the-world.

[11] Kreithen, M.L., Quine, D.B. Infrasound detection by the homing pigeon:
A behavioral audiogram. J. Comp. Physiol. 129, 1–4 (1979).
https://doi.org/10.1007/BF00679906

[12] Zeyl JN, den Ouden O, Köppl C, Assink J, Christensen-Dalsgaard J,
Patrick SC, Clusella-Trullas S. Infrasonic hearing in birds: a review of
audiometry and hypothesized structure-function relationships. Biol Rev
Camb Philos Soc. 2020 Aug;95(4):1036-1054. doi: 10.1111/brv.12596.
Epub 2020 Mar 31. PMID: 32237036.

[13] How powerful is a dog’s nose? (2020) Phoenix Veterinary Center -
Veterinarian in Phoenix, AZ US. Available at: https://phoenixvetcenter.
com/blog/214731-how-powerful-is-a-dogs-nose.

[14] Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, Renier C, Hitte
C, André C, Fraser C, Galibert F. Compar-ison of the canine and human

olfactory receptor gene repertoires. Genome Biol. 2003;4(12):R80. doi:
10.1186/gb-2003-4-12-r80. Epub 2003 Nov 28. PMID: 14659017;
PMCID: PMC329419.

[15] Olender T., Fuchs T., Linhart C., Shamir R., Adams M., Kalush F., Khen
M., and Lancet D., (2004) The canine ol-factory subgenome, Genomics,
83(3), pp. 361–372. doi: 10.1016/j.ygeno.2003.08.009.

[16] Kokocińska-Kusiak A., Woszczyło M., Zybala M., Maciocha J.,
Barłowska K., and Dzięcioł M., Canine Olfaction: Physiology, Behavior,
and Possibilities for Practical Applications. Animals (Basel). 2021 Aug
21;11(8):2463. doi: 10.3390/ani11082463. PMID: 34438920; PMCID:
PMC8388720.

[17] Liu, Y., Zhou, Q., Wang, Y. et al. Gekko japonicus genome reveals
evolution of adhesive toe pads and tail regeneration. Nat Commun 6,
10033 (2015). https://doi.org/10.1038/ncomms10033.

[18] Correspondent, D. (2016) Why humans can’t walk up walls like
Spiderman decoded, Deccan Chronicle. Available at:
https://www.deccanchronicle.com/pets-and-environment/190116/why-
humans-can-t-walk-up-walls-like-spiderman-decoded.html.

[19] Neimark, J. (2019). What is eagle eye vision? All About Vision. Available
at: https://www.allaboutvision.com/resources/eagle-vision/.

[20] Gehring WJ. The genetic control of eye development and its implications
for the evolution of the various eye-types. Int J Dev Biol. 2002
Jan;46(1):65-73. PMID: 11902689.

[21] Hasan, A. (2023). Humanoid Robots-Recent Developments & Human-
Robot Interaction: A paper review. 10.13140/RG.2.2.19016.80641.

Rishabh Garg | BITS Pilani, India is a Software
Development Engineer (L3) with Google. He has worked
in Data Science for Indian Institute of Technology, New
Delhi, SDE with ServiceNow and Brand Partner with
Cuvette. He is currently enrolled for Masters in Computer
Science – On campus program with Georgia Institute of
Technology, Atlanta, Georgia, United States.

He has authored books on Blockchain for Real World Applications (John
Wiley & Sons Inc. US); From Virtual World to Real Lives (in two volumes -
Taylor & Francis, Oxfordshire, UK); One World - One Identity, Self Sovereign
Identities, and a number of books in foreign languages that were published in
US, UK, Germany, France, Italy, Moldova, Russia, Spain, and Portugal.

He is a Journal Referee with IEEE Internet of Things. He has published 5
research papers, 12 chapters, 15 conference papers, and 42 blogs / online
articles. He has been Program Committee Member cum Reviewer for more than
30 International Conference on Artificial Intelligence, Machine Learning,
Cloud Computing, and Blockchain held in San Francisco (USA), Toronto,
Vancouver (Canada), London (UK), Zurich (Switzerland), Copenhagen
(Denmark), Youngs, Sydney. Melbourne, New South Wales (Australia), and
Dubai (UAE).

Rishabh is a recipient of the National Award for Exceptional Achievements
in Innovation from the President of India, National CSIR Innovation Award
from the Prime Minister of India, and honors from various ministries with
Government of India. He has also received an International Bronze Award from
the Royal Commonwealth Society, London and Young Scientist Award from
Ministry of Science & Technology, and Earth Sciences, Government of India
for creative technological solutions.

Anuja Vyas is currently pursuing her Masters in
Biotechnology from Institute for Excellence in Higher
Education, Bhopal, India. In the midst of a riveting
research project on artificial life, she coined the term
‘Genetronics’. Anuja concocted an innovative application
that impeccably detects variations within a genome

compared to the standard one.

Aamna Khan is a student of Institute for Excellence in
Higher Education, Bhopal, Madhya Pradesh, India. She is
presently pursuing her Bachelor of Science (B.Sc.) in
Biotechnology. Intrigued by Genomics, Bioinformatics,
Healthcare, Sustainability, Artificial Intelligence, and
Machine Learning, she has published a paper on
feasibility and constraints in implementing Artificial

Intelligence in Biotechnology and Healthcare.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

125International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

Azwan Tariq is a student of University College London
in the United Kingdom. He is currently pursuing his
Masters in Mechanical Engineering (M. Eng.) with
Business Finance. He is the control, robotics and
simulation lead in his fourth year project, the construction
of a bio-inspired underwater surveillance robot. His
interests lie in Control implementation, Robotics,

Dynamics, Design, Simulations and Sustainability.

World Academy of Science, Engineering and Technology
International Journal of Biotechnology and Bioengineering

 Vol:18, No:9, 2024

126International Scholarly and Scientific Research & Innovation 18(9) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 B
io

te
ch

no
lo

gy
 a

nd
 B

io
en

gi
ne

er
in

g
V

ol
:1

8,
 N

o:
9,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
82

2.
pd

f

