Search results for: Process Models.
6274 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7346273 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc
Abstract:
Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.
Keywords: numerical model, additive manufacturing, frictional heat generation, process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5166272 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars
Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic
Abstract:
Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.
Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53916271 Discussion about Frequent Adjustment of Urban Master Planning in China: A Case Study of Changshou District, Chongqing City
Authors: Sun Ailu, Zhao Wanmin
Abstract:
Since the reform and opening, the urbanization process of China has entered a rapid development period. In recent years, the authors participated in some projects of urban master planning in China and found a phenomenon that the rapid urbanization area of China is experiencing frequent adjustment process of urban master planning. This phenomenon is not the natural process of urbanization development. It may be caused by different government roles from different levels. Through the methods of investigation, data comparison and case study, this paper aims to explore the reason why the rapid urbanization area is experiencing frequent adjustment of master planning and give some solution strategies. Firstly, taking Changshou district of Chongqing city as an example, this paper wants to introduce the phenomenon about frequent adjustment process in China. And then, discuss distinct roles in the process between national government, provincial government and local government of China. At last, put forward preliminary solutions strategies for this area in China from the aspects of land use, intergovernmental cooperation and so on.
Keywords: Urban master planning, frequent adjustment, urbanization development, problems and strategies, China.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10906270 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic
Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain
Abstract:
The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27496269 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices
Authors: F. Djeffal, N. Lakhdar, T. Bendib
Abstract:
The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15386268 Multidimensional Sports Spectators Segmentation and Social Media Marketing
Authors: B. Schmid, C. Kexel, E. Djafarova
Abstract:
Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research.Keywords: Multidimensional segmentation, social media, sports marketing, sports spectators segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26136267 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16396266 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23186265 An Interactive Web-based Simulation Tool for Surgical Thread
Authors: A. Ruimi, S. Goyal, B. M. Nour
Abstract:
Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16546264 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy
Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang
Abstract:
To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.
Keywords: NPC, ANN, logistic regression, xerostomia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16366263 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27046262 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.
Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11076261 Developments for ''Virtual'' Monitoring and Process Simulation of the Cryogenic Pilot Plant
Authors: Carmen Maria Moraru, Iuliana Stefan, Ovidiu Balteanu, Ciprian Bucur, Liviu Stefan, Anisia Bornea, Ioan Stefanescu
Abstract:
The implementation of the new software and hardware-s technologies for tritium processing nuclear plants, and especially those with an experimental character or of new technology developments shows a coefficient of complexity due to issues raised by the implementation of the performing instrumentation and equipment into a unitary monitoring system of the nuclear technological process of tritium removal. Keeping the system-s flexibility is a demand of the nuclear experimental plants for which the change of configuration, process and parameters is something usual. The big amount of data that needs to be processed stored and accessed for real time simulation and optimization demands the achievement of the virtual technologic platform where the data acquiring, control and analysis systems of the technological process can be integrated with a developed technological monitoring system. Thus, integrated computing and monitoring systems needed for the supervising of the technological process will be executed, to be continued with the execution of optimization system, by choosing new and performed methods corresponding to the technological processes within the tritium removal processing nuclear plants. The developing software applications is executed with the support of the program packages dedicated to industrial processes and they will include acquisition and monitoring sub-modules, named “virtually" as well as the storage sub-module of the process data later required for the software of optimization and simulation of the technological process for tritium removal. The system plays and important role in the environment protection and durable development through new technologies, that is – the reduction of and fight against industrial accidents in the case of tritium processing nuclear plants. Research for monitoring optimisation of nuclear processes is also a major driving force for economic and social development.
Keywords: Monitoring system, process simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19736260 Taking People, Process and Partnership on Board for Participatory Decision Making
Authors: B. Mikulskienė
Abstract:
Public administration institutions in cooperation with politicians are not the sole policy decision makers in full meaning any longer. Meanwhile, a special role, namely steering the decision making process, could be delegated to them. Despite the wide scientific discussion on different aspects what has direct impact on policy creation, there is a lack of holistic practical managerial advice, which could integrate infrastructure of policy decision making with intellectual capital and with interconnection of partnership. The proposed harmonized decision making model of process, people and partnership entitled by acronym HM-3P is analyzed as a framework for implementation of public administration steering role seeking the coherent social involvement in policy decision making.Keywords: participatory decision making, partnership, stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14546259 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.
Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6036258 Determination of the Economic Planning Depth for Assembly Process Planning
Authors: A. Kampker, P. Burggräf, Y. Bäumers
Abstract:
In order to be competitive, companies have to reduce their production costs while meeting increasing quality requirements. Therefore, companies try to plan their assembly processes as detailed as possible. However, increasing product individualization leading to a higher number of variants, smaller batch sizes and shorter product life cycles raise the question to what extent the effort of detailed planning is still justified. An important approach in this field of research is the concept of determining the economic planning depth for assembly process planning based on production specific influencing factors. In this paper first solution hypotheses as well as a first draft of the resulting method will be presented.Keywords: Assembly process planning, economic planning depth, planning benefit, planning effort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21216257 A Context-Aware Supplier Selection Model
Authors: Mohammadreza Razzazi, Maryam Bayat
Abstract:
Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18186256 Identifying and Adopting Latter Instruments Determining the Sustainable Company Competitiveness
Authors: Andrej Miklošík, Petra Horváthová, Štefan Žák
Abstract:
Nowadays companies in all sectors are looking for the sources of competitive advantages. Holistic marketing approach searches for their emergence based on the integration of all components and elements across the organization. Modern marketing sees the sources of competitive advantage in implementing the latest managerial practices, motivation, intelligent project management, knowledge management, collaborative marketing, CSR and, in the recent years, also in the business process optimization. With the use of modern tools including business process management and business process modelling the company can markedly increase its internal efficiency which can lead not only to lowering the costs but to creating the environment for optimal customer care, positive corporate culture and for origination of innovations as well. In the article the authors analyze the recent trend in this area and introduce suggestions to companies to identify and optimize the key processes that have a significant impact of the company´s competitiveness.Keywords: business process optimization, competitive advantage, corporate social responsibility, knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17366255 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: Automatic calibration framework, approximate Bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17406254 A Study on the Impacts of Computer Aided Design on the Architectural Design Process
Authors: Halleh Nejadriahi, Kamyar Arab
Abstract:
Computer-aided design (CAD) tools have been extensively used by the architects for the several decades. It has evolved from being a simple drafting tool to being an intelligent architectural software and a powerful means of communication for architects. CAD plays an essential role in the profession of architecture and is a basic tool for any architectural firm. It is not possible for an architectural firm to compete without taking the advantage of computer software, due to the high demand and competition in the architectural industry. The aim of this study is to evaluate the impacts of CAD on the architectural design process from conceptual level to final product, particularly in architectural practice. It examines the range of benefits of integrating CAD into the industry and discusses the possible defects limiting the architects. Method of this study is qualitatively based on data collected from the professionals’ perspective. The identified benefits and limitations of CAD on the architectural design process will raise the awareness of professionals on the potentials of CAD and proper utilization of that in the industry, which would result in a higher productivity along with a better quality in the architectural offices.
Keywords: Architecture, architectural practice, computer aided design, CAD, design process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19166253 Optimizing usage of ICTs and Outsourcing Strategic in Business Models and Customer Satisfaction
Authors: Saeed Rahmani Bagha, Mohammad Mirzahosseinian, Sonatkhatoon Kashanimotlagh
Abstract:
Nowadays, under developed countries for progress in science and technology and decreasing the technologic gap with developed countries, increasing the capacities and technology transfer from developed countries. To remain competitive, industry is continually searching for new methods to evolve their products. Business model is one of the latest buzzwords in the Internet and electronic business world. To be successful, organizations must look into the needs and wants of their customers. This research attempts to identify a specific feature of the company with a strong competitive advantage by analyzing the cause of Customer satisfaction. Due to the rapid development of knowledge and information technology, business environments have become much more complicated. Information technology can help a firm aiming to gain a competitive advantage. This study explores the role and effect of Information Communication Technology in Business Models and Customer satisfaction on firms and also relationships between ICTs and Outsourcing strategic.Keywords: Information Communication Technology, Outsourcing, Customer Satisfaction, Business Plan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16956252 Design Process of the Fixing Pipes in the Guide Pipe Anchor System for Cable-Stayed Bridges
Authors: Jinwoong Choi, Sun-Kyu Park, Sungnam Hong
Abstract:
For the efficient and safe use of the cable-stayed bridge, a design based on the detailed local analysis of the cable anchor system is required. Also, a theoretical design process for the anchor system should be prepared and reviewed. Generally, the size of the fixing pipe in the anchor system is decided according to the specifications prepared by cable-manufacturing companies, and accordingly, there is difficulty determining the initial inner diameters of the fixing pipes. As such, there is no choice but to use the products with the existing sizes. In this study, the existing design process of the fixing pipe, is a type of guide pipe anchor in the cable anchor system, is reviewed, a formula determining the thickness of the fixing pipe is proposed, and the convenience and validity of the suggested equation is compared with the results of the existing designs to verify its convenience and validity.Keywords: Cable-stayed bridge; Guide pipe anchor system; Fixing pipe; Theoretical design process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33096251 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.
Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10056250 Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper aims to select the best military attack helicopter to purchase by the Armed Forces and provide greater reconnaissance and offensive combat capability in military operations. For this purpose, a multiple criteria decision analysis method integrated with the variance weight procedure was applied to the military attack helicopter selection problem. A real military aviation case problem is conducted to support the Armed Forces decision-making process and contributes to the better performance of the Armed Forces. Application of the methodology resulted in ranking lists for ordering and prioritizing attack helicopters, providing transparency and simplicity to the decision-making process. Nine military attack helicopter models were analyzed in the light of strategic, tactical, and operational criteria, considering attack helicopters. The selected military attack helicopter would be used for fire support and reconnaissance activities required by the Armed Forces operation. This study makes a valuable contribution to the problem of military attack helicopter selection, as it represents a state-of-the-art application of the MCDMA method to contribute to the solution of a real problem of the Armed Forces. The methodology presented in this paper can be used to solve real problems of a wide variety, especially strategic, tactical and operational, and is, therefore, a very useful method for decision making.
Keywords: aircraft selection, military attack helicopter selection, attack helicopter fleet planning, MCDMA, multiple criteria analysis, multiple criteria decision making analysis, distance function measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9196249 Bidirectional Dynamic Time Warping Algorithm for the Recognition of Isolated Words Impacted by Transient Noise Pulses
Authors: G. Tamulevičius, A. Serackis, T. Sledevič, D. Navakauskas
Abstract:
We consider the biggest challenge in speech recognition – noise reduction. Traditionally detected transient noise pulses are removed with the corrupted speech using pulse models. In this paper we propose to cope with the problem directly in Dynamic Time Warping domain. Bidirectional Dynamic Time Warping algorithm for the recognition of isolated words impacted by transient noise pulses is proposed. It uses simple transient noise pulse detector, employs bidirectional computation of dynamic time warping and directly manipulates with warping results. Experimental investigation with several alternative solutions confirms effectiveness of the proposed algorithm in the reduction of impact of noise on recognition process – 3.9% increase of the noisy speech recognition is achieved.
Keywords: Transient noise pulses, noise reduction, dynamic time warping, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19466248 Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft
Authors: C. Ardil, A. M. Pashaev, R.A. Sadiqov, P. Abdullayev
Abstract:
In this paper, multiple criteria decision making analysis technique, is presented for ranking and selection of a set of determined alternatives - fighter aircraft - which are associated with a set of decision factors. In fighter aircraft design, conflicting decision criteria, disciplines, and technologies are always involved in the design process. Multiple criteria decision making analysis techniques can be helpful to effectively deal with such situations and make wise design decisions. Multiple criteria decision making analysis theory is a systematic mathematical approach for dealing with problems which contain uncertainties in decision making. The feasibility and contributions of applying the multiple criteria decision making analysis technique in fighter aircraft selection analysis is explored. In this study, an integrated framework incorporating multiple criteria decision making analysis technique in fighter aircraft analysis is established using entropy objective weighting method. An improved integrated multiple criteria decision making analysis method is utilized to aggregate the multiple decision criteria into one composite figure of merit, which serves as an objective function in the decision process. Therefore, it is demonstrated that the suitable multiple criteria decision making analysis method with decision solution provides an effective objective function for the decision making analysis. Considering that the inherent uncertainties and the weighting factors have crucial decision impacts on the fighter aircraft evaluation, seven fighter aircraft models for the multiple design criteria in terms of the weighting factors are constructed. The proposed multiple criteria decision making analysis model is based on integrated entropy index procedure, and additive multiple criteria decision making analysis theory. Hence, the applicability of proposed technique for fighter aircraft selection problem is considered. The constructed multiple criteria decision making analysis model can provide efficient decision analysis approach for uncertainty assessment of the decision problem. Consequently, the fighter aircraft alternatives are ranked based their final evaluation scores, and sensitivity analysis is conducted.
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6256247 Influence of the Low Frequency Ultrasound on the Cadmium (II) Biosorption by an Ecofriendly Biocomposite (Extraction Solid Waste of Ammi visnaga / Calcium Alginate): Kinetic Modeling
Authors: L. Nouri Taiba, Y. Bouhamidi, F. Kaouah, Z. Bendjama, M. Trari
Abstract:
In the present study, an ecofriendly biocomposite namely calcium alginate immobilized Ammi Visnaga (Khella) extraction waste (SWAV/CA) was prepared by electrostatic extrusion method and used on the cadmium biosorption from aqueous phase with and without the assistance of ultrasound in batch conditions. The influence of low frequency ultrasound (37 and 80 KHz) on the cadmium biosorption kinetics was studied. The obtained results show that the ultrasonic irradiation significantly enhances and improves the efficiency of the cadmium removal. The Pseudo first order, Pseudo-second-order, Intraparticle diffusion, and Elovich models were evaluated using the non-linear curve fitting analysis method. Modeling of kinetic results shows that biosorption process is best described by the pseudo-second order and Elovich, in both the absence and presence of ultrasound.Keywords: Biocomposite, biosorption, cadmium, non-linear analysis, ultrasound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15966246 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436245 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: Football, penalty shootouts, Montecarlo simulation, ABBA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856