
 

 

  
Abstract—The paper investigates the potential of support vector 

machines and Gaussian process based regression approaches to 
model the oxygen–transfer capacity from experimental data of 
multiple plunging jets oxygenation systems. The results suggest the 
utility of both the modeling techniques in the prediction of the 
overall volumetric oxygen transfer coefficient (KLa) from operational 
parameters of multiple plunging jets oxygenation system. The 
correlation coefficient root mean square error and coefficient of 
determination values of 0.971, 0.002 and 0.945 respectively were 
achieved by support vector machine in comparison to values of 
0.960, 0.002 and 0.920 respectively achieved by Gaussian process 
regression. Further, the performances of both these regression 
approaches in predicting the overall volumetric oxygen transfer 
coefficient was compared with the empirical relationship for multiple 
plunging jets. A comparison of results suggests that support vector 
machines approach works well in comparison to both empirical 
relationship and Gaussian process approaches, and could successfully 
be employed in modeling oxygen-transfer. 
 

Keywords—Oxygen-transfer, multiple plunging jets, support 
vector machines, Gaussian process.  

I. INTRODUCTION 
N activated sludge process is the most widely preferred 
aerobic method of wastewater treatment. It is a 

biochemical process in which the rate of consumption of 
organic matter by the aerobic microorganisms is dependent 
upon the amount of available dissolved oxygen. In activated 
sludge process, oxygenation facility is designed to supply the 
required oxygen demand and to keep the return sludge-floc 
aerobic, as well as to provide adequate mixing so that there is 
an increase in contact opportunity between the 
microorganisms and the organic matter to enhance biological 
activity. Thus, one of the most important aspects of designing 
an activated sludge process system is concerned with the type 
and design of an oxygenation system. 

Plunging jet applications include aeration and floatation in 
water and wastewater treatment, bubble floatation of minerals, 
oxygenation of mammalian-cell bio-reactors, biological 
aerated filter, fermentation, stirring of chemicals as well as 
increasing gas-liquid transfer, cooling system in power plants, 
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plunging columns, breakers and waterfalls [1]-[7]. For aerobic 
treatment processes, such as activated sludge process, 
plunging jet oxygenation systems provide a simple and 
inexpensive method of supplying oxygen for wastewater 
treatment [1], [7], [8]. Oxygenation by a plunging water jet is 
an attractive way to effect oxygen-transfer than conventional 
oxygenation systems for various reasons[1], [7], [9], [10]: it 
does not require compressor blower; it facilitates make-up of 
the “closed” system, which enhance complete utilization of 
oxygen and volatile reactants; it is simple in design, 
construction and operation; it does not require separate stirring 
devices because the water jet itself achieves aeration and 
mixing; it is energetically attractive as a means of 
straightforward contacting mechanism in fouling or hazardous 
environments; and it is free from operational difficulties such 
as clogging in air diffusers, limitations on the installation of 
mechanical aerators by the tank width, etc.  Supported by 
these potential advantages, there has been a growing interest 
in the oxygenation by plunging water jets in the last few years.  

A number of studies have been reported on air-water 
oxygen transfer by single plunging jets [8], [11]-[18].  Some 
of these studies have also suggested empirical relationships 
between various jet parameters for estimating oxygen transfer 
capacity. The simplest relationships for single circular water 
jets plunging vertically as proposed by [19], [15] and [14] 
respectively are: 

( )
2324

20 1085.4101.3 jjL dvAK −− ×+×=                (1) 

( ) PAK L
5

20 109 −×=   (2)               

( ) ( ) 65.0
20 029.0 VPAK L =   (3)            

where ( )20AK L
 is volumetric oxygen transfer factor at 

standard conditions (m3/h); 
jv  is jet velocity at exit (m/s); 

jd  

is jet diameter (m); P  is jet power (W); ( )20AK L
 is 

volumetric oxygen transfer coefficient at standard conditions 
(1/s); and VP  is jet power per unit volume (kW/m3). 

Recently, [20] investigated oxygen-transfer by multiple 
plunging jets. The results showed that the volumetric oxygen-
transfer coefficient at standard conditions ( ( )20AK L ) and 

oxygen-transfer efficiency ( OTE ) for multiple-plunging-jets 
was higher than that for a single jet at a given jet power. 
Further, for multiple plunging jets device, the volumetric 
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oxygen-transfer coefficient gradually increases as the number 
of jets was increased from 1 to 16. The study has 
recommended the use of multiple plunging jets device over 
single plunging jet system for aeration/oxygenation at higher 
jet powers as in practical situations where large volumes of 
wastewater at higher discharges are to be oxygenated. Deswal 
and Verma [20] have also suggested an empirical relationship 
for multiple plunging jets oxygenation systems as under: 

( )
53.114.284.0

20 113.0 jjL dvnaK =              (4) 

where, ( )20AK L  is the volumetric oxygen-transfer coefficient 

at standard conditions (per sec) and n  is the number of jets in 
multiple plunging jets oxygenation system.  

Within last few years, soft computing techniques like 
artificial neural network, support vector machines, Gaussian 
processes and M5 model tree have been used in civil and 
environmental engineering applications [6], [21]-[31] and 
found to be working well. 

Keeping in view the potential of Gaussian processes and 
support vector machines based regression approaches; the 
present study explores the capabilities of these techniques in 
modeling oxygen-transfer by multiple plunging jets and 
compares their performance with the empirical relationship 
suggested by [20]. 

II. GAUSSIAN PROCESS REGRESSION 
The Gaussian processes (GP) regression models are based 

on the assumption that adjacent observations should convey 
information about each other. Gaussian processes are a way of 
specifying a prior directly over function space. This is a 
natural generalization of the Gaussian distribution whose 
mean and covariance is a vector and matrix, respectively. The 
Gaussian distribution is based over vectors, whereas the GP is 
based over functions. Thus, due to prior knowledge about the 
data and functional dependencies, no validation process is 
required for generalization and GP regression models are able 
to understand the predictive distribution corresponding to test 
input [32]. 

A GP is defined as a collection of random variables, any 
finite number which has a joint multivariate Gaussian 
distribution. Let γχ ×  represent the domain of inputs and 

outputs respectively, from which n pairs ( )ii yx ,  are drawn 
independently and identically distributed. For regression 
assume that ℜ⊆y , then a GP on χ  is defined by a mean 

function ℜ→χμ :  and covariance function ℜ→× χχ:k . 
The main assumption of GP regression is that y is given by 

( ) ξ+= xfy where ( )20 σξ ,~ Ν . The symbol ~ in statistics 
means sampling for. In GP regression, for every input x there 
is an associated random variable f(x), which is the value of the 
stochastic function f at that location. In this work it is assumed 
that observational error ξ  is normal independent and 
identically distributed with mean value as zero ( ( ) 0=xμ ), 
variance 2σ  and ( )xf is drawn from the Gaussian process on 

χ specified by k.  That is,  

( ) ( )I,~.......,, 2
1 0 σ+Ν= KyyY n  

where ( )jiij xxkK ,=  and I is the identity matrix. 

Since ( )I,~ 20 σ+Ν KXY  is normal, so is the conditional 
distribution of test labels given training and test 
data ( )** ,, XXYYp . Then, one has ( )ΣΝ ,~,, ** μXXYY  
where                                 

( ) ( )( ) YXXKXXK
12 −

+= I,,* σμ                                         (5) 
             

( ) ( ) ( )( ) ( )**** ,I),,I, XXKXXKXXKXXK
122 −

+−−=Σ σσ (6) 

If there are n training data and *n test data, then ( )*, XXK  

represents the *nn ×  matrix of covariances evaluated at all 
pairs of training and test data sets and similarly for the other 
values ( )XXK , , ( )XXK ,* , ( )** , XXK ; where X and Y is the 

vector of training data and training data labels iy , whereas 

*X is the vector of test data. 
A specified covariance function is required to generate a 

positive semi-definite covariance matrix K, when 
( )jiij kK x,x= . The term kernel function used in SVM is 

equivalent to the covariance function used in GP regression. 
With the known values of kernel k and degree of noise 2σ , (5) 
and (6) would be enough for inference.  

During the training process of GP regression models, one 
needs to choose a suitable covariance function as well as its 
parameters. In case of GP regression with a fixed value of 
Gaussian noise, GP model can be trained by applying 
Bayesian inference, that is maximizing marginal likelihood. 
This leads to the minimization of the negative log-posterior: 

           

( ) ( ) ( ) ( )kppKkp T loglogKlog
2
1yy

2
1 22122 −−+++= − σσσσ II,                   

                          (7) 
To find the hyper-parameters, the partial derivative of (7) 

can be obtained with respect to 2σ  and k and minimization 
can be achieved by gradient descent. For further details about 
GP regression and different covariance function readers are 
referred to [33]. 

III. SUPPORT VECTOR MACHINES 
Support vector machines (SVMs) are classification or 

regression methods, which have been derived from statistical 
learning theory [34]. The SVMs classification methods are 
based on the principle of optimal separation of classes. If the 
classes are separable – this method selects, from among the 
infinite number of linear classifiers, the one that minimize the 
generalization error, or at least an upper bound on this error, 
derived from structural risk minimization. Thus, the selected 
hyper plane will be one that leaves the maximum margin 
between the two classes, where margin is defined as the sum 
of the distances of the hyper plane from the closest point of 
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the two classes [34]. 
If the two classes are non-separable, the SVMs try to find 

the hyper plane that maximizes the margin and at the same 
time, minimizes a quantity proportional to the number of 
misclassification errors. The trade off between margin and 
misclassification error is controlled by a positive constant that 
has to be chosen beforehand. This technique of designing 
SVMs can be extended to allow for non-linear decision 
surfaces. This can be achieved by projecting the original set of 
variables into a higher dimensional feature space and 
formulating a linear classification problem in the feature space 
[34]. The support vector machines can be applied to 
regression problems and can be formulated as given below: 

Reference [34] proposed Support Vector Regression (SVR) 
by introducing an alternative insensitive loss function (ε ). 
This loss function allows the concept of margin to be used for 
regression problems. Purpose of the SVR is to find a function 
having at the most ε deviation from the actual target vectors 
for all given training data and have to be as flat as possible 
[35]. This can be put in other words as the error on any 
training data has to be less than ε . For a given training data 
with k number of samples, represented by 
( ) ( )kk11 yy ,x...,,.........,x  a linear decision function can 
be represented by  

( ) bf += xw,x α,                                                  (8) 

where ( ) Λ∈⇒ αα,xf (where Λ is a set of parameters 
used in the decision rule; for example, in a multilayer neural 
network, Λ  is a set of weights of the network), x is an N 
dimensional observed data vector, R is set of all real numbers, 
b is the bias term that determine the offset of the hyperplane 
from origin and w determines the orientation of hyperplane. 
Further, xw,  represents the dot product in space NR . A 

smaller value of w indicates the flatness of (8), which can be 
achieved by minimising the Euclidean norm as defined by 

2w [35]. Thus, an optimisation problem for regression can 

be written as: 

minimise 2

2
1 w  subject to 

⎪⎩

⎪
⎨
⎧ ≤−−

≤−+
ε
ε

by
yb

ii

ii

xw,
xw,

      (9) 

The optimisation problem in (9) is based on the assumption 
that there exists a function that provides an error on all 
training pairs which is less than or equal to ε . In real life 
problems, there may be a situation like one defined for 
classification by [34]. So, to allow some more error, slack 

variables ', ξξ  can be introduced in (9), and the optimisation 
problem defined above can be rewritten as: 

minimise  ( )∑
=

++
k

i
iiC

1

'2

2
1 ξξw  

subject to 
iii by ξε +≤−− xw,  

             '
iii yb ξε +≤−+xw,                           (10)      

and      0≥', ii ξξ  for all    i = 1, 2,……, k. 

The parameter C is determined by the user and it 
determines the trade-off between the flatness of the function 
and the amount by which the deviations to the error more than 
ε can be tolerated. The optimisation problem in (10) can be 
solved by replacing the inequalities with a simpler form by 
transforming the problem to a dual space representation using 
Lagrangian multipliers [36].  

The Lagrangian is formed by introducing positive Lagrange 

multipliers iλ , ''
iii η,η,λ   where i = 1,….,k and multiplying 

the constraint equations by these multipliers, and  finally  
subtracting  the  results  from  the  objective  function (i.e. 

2w ). The Lagrangian for (10) can be written as: 

( ) ( )

( ) ( )∑∑

∑ ∑

==

= =

+−−−++−

++−+−++=

k

i
iiii

k

i
iiii

k

i

k

i
iiiiii

by

byCL

1

''

1

''

1 1

'2

x,w

x,ww
2
1

ξηξηξελ

ξελξξ
(11) 

The solution of this optimisation problem can be obtained 
by locating the saddle point of the Lagrange function defined 
in the (11). The Saddle points of (11) can be obtained by 
equating partial derivative of L with respect to w, b, 

'
ii and ξξ to zero. Thus, (8) can now be written as: 

 ( ) ( ) bf i
k

i
ii +−= ∑

=
xxx ,,

1

' λλα                              (12) 

The technique discussed above can be extended to allow for 
non-linear support vector regression by introducing the 
concept of the kernel function [34]. This is achieved by 
mapping the data into a higher dimensional feature space, thus 
performing linear regression in feature space. The regression 
problem in feature space can be written by replacing ji xx ⋅  

in (12) with ( ) ( )ji xΦxΦ ⋅ , where ( )xΦ  is the mapping to 

the feature space.  
Where                       ( ) ( ) ( )jiji xΦxΦx,x ⋅≡K  

Regression function given in (12) can now be written as: 
                  

( ) ( ) ( ) bKf i

k

i
ii +−= ∑

=

xxx ,,
1

' λλα                   (13) 
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IV. DATA SET 
Data used in the present study are taken from an earlier 

study by Deswal and Verma [20]. The study was reported that 
multiple plunging jets have higher oxygen transfer rate in 
comparison to a single jet under similar conditions. The study, 
as stated earlier, has also proposed an empirical relationship to 
predict the overall oxygen transfer coefficient ( aK L ) by 
multiple plunging jets for a given configuration under 
required flow conditions (4). The dataset consists of forty four 
experimental observations on different configurations (in 
terms of jet diameter and number of jets) of multiple plunging 
jets oxygenation system. To predict the overall oxygen 
transfer coefficient by multiple plunging jets, three input 
parameters, namely jet velocity at exit (m/s), jet diameter (m) 
and number of jets was used. A ten-fold cross-validation was 
used with data points. Cross-validation is a method of 
estimating the accuracy of a regression model in which the 
input data set is divided into several parts (number defined by 
the user), with each part in turn used to test a model fitted to 
the remaining parts. 

Design of SVMs and GP require selection of a suitable 
kernel. A radial basis function (RBF) kernel in SVMs has 
been found working well in several civil engineering 
applications [26]-[27], and thus used in this study. In order to 
have a uniform comparison, RFF kernel has been used in GP 
regression as well . The optimal values of various user-defined 
parameters for both support vector machines and GP are 
provided in Table I. 

V. RESULTS 
To assess the usefulness of SVMs and GP regression 

techniques in predicting overall oxygen transfer coefficient by 
multiple plunging jets, the dataset of [20] was used. The 
values of overall oxygen transfer coefficient obtained using 
(4) were also calculated for the dataset so as to compare it 
with SVMs and GP regression models. Correlation 
coefficient, coefficient of determination ( 2R ) and root mean 
square error (RMSE) values were used to compare the 
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Fig. 1 Overall oxygen transfer coefficient by Eq. (4) proposed by 
[20] versus experimental data. 

 

R2 = 0.945

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.000 0.010 0.020 0.030 0.040

Experimental KLa (1/s)

SV
M

_P
re

di
ct

ed
 K

La
 (1

/s
)

Fig. 2 Overall oxygen transfer coefficient by support vector 
machines versus experimental data. 
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Fig. 3 Overall oxygen transfer coefficient by Gaussian process 
regression versus experimental data. 

 

TABLE I 
USER-DEFINED PARAMETERS 

Approach   

Support vector machines        RBF kernel; C = 20; gamma = 2 
 
Gaussian Processes 

 
RBF kernel; Gamma = 0.5; noise = 0.04 

 

TABLE II 
CORRELATION COEFFICIENT AND RMSE VALUES 

Approach Correlation 
coefficient 

Root mean 
square error 

Support vector machines 0.971 0.002 

Gaussian process regression 0.960 0.002 
Empirical relationship (4) 
as proposed by [20] 

0.961 0.003 
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performance of SVMs and GP with empirical relationship 
proposed by Deswal and Verma [20] as represented by (4). 

Table II provides values of correlation coefficient and 
RMSE obtained using SVMs, GP and empirical relationship 
(4) of [20]. In comparison to the correlation coefficient value 
of 0.961 (RMSE=0.003) achieved by empirical relationship 
(4), the GP and SVMs provide correlation coefficient values 
of 0.960 (RMSE=0.002) and 0.971 (RMSE= 0.002) 
respectively. Thus, suggesting the utility of both these 
regression techniques for such environmental engineering 
applications. However, the performance by SVMs is better 
than GP for this data set. 

Figs. 1–3 provide the graphs plotted between experimental 
and predicted values of overall oxygen transfer coefficient by 
multiple plunging jets oxygenation system using empirical 
relationship (4) proposed by Deswal and Verma [20], SVMs 
and GP regression respectively. The SVMs results in Fig. 2 
show less scatter in the data points than GP. Further, a higher 
value of R2 (0.945) with SVMs confirms that this approach  
works well in predicting the overall oxygen transfer 
coefficient by multiple plunging jets in comparison to both the 
GP and empirical relationship (4) proposed by Deswal and 

Verma [20]. 
Fig. 4 represents the variation of experimental and 

predicted overall oxygen transfer coefficient by multiple 
plunging jets with the number of test data. It is evident from 
this plot that overall oxygen transfer coefficient predicted by 
SVMs regression technique is in good agreement with actual 
experimental values; whereas, that is not the case with GP 
regression approach as the predicted values by this technique 
are deviating at few of the test data. Thus, suggesting a better 
performance of SVMs in comparison to GP regression. 

VI. CONCLUSION 
This study has investigated the potential of SVMs and GP 
regression approaches in predicting overall oxygen transfer 
coefficient by multiple plunging jets oxygenation system in 
comparison with the empirical relationship suggested by [20]. 
The results presented are quite encouraging and suggest that 
the SVMs regression technique works well in comparison to 
GP regression for this data set but both of these approaches 
yields an approximation to the capacity predicted by empirical 
relationship. Further, the application of SVMs to such data 
can be utilized in comparing the performance of single and 
multiple plunging jets of different configurations and also in 
deciding the optimum configuration of multiple plunging jets 
for given flow conditions. 
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