Search results for: Pre-route simulation
2283 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study
Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim
Abstract:
Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.
Keywords: Optimum energy systems, renewable energy sources, smart grid, micro-grid system, on- grid system, off-grid system, modeling and simulation, economical evaluation, net present value, cost of energy, environmental impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24252282 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings
Authors: Marco Picco, Mahmood Alam
Abstract:
Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analyzing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.
Keywords: Vacuum insulated panels, building performance simulation, payback period, building energy retrofit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5222281 Insertion of Thiazolidinediones into Carbon Nanotube
Authors: Behnoush Zare, Mojdeh Akhavan, Ahmad Reza Dehpour
Abstract:
In this study we investigate the insertion of pioglitazone, a Thiazolidinedione, into the two different sizes of Carbon nanotub. It was shown that the insertion of pioglitazone into the carbon nanotube in a water solute environment could be related to the diameter of the nanotube and in the flow of the waters via hydrophilic interactions. This encapsulated drug-carbon nanotube molecule can be further applicable in other investigations in target therapy with these agents regarding to reduce their potential toxic effects.Keywords: Carbon Nanotube, MD Simulation, Thiazolidinedions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18272280 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM
Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian
Abstract:
Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.
Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29242279 Study of Cahn-Hilliard Equation to Simulate Phase Separation
Authors: Nara Guimarães, Marcelo Aquino Martorano, Douglas Gouvêa
Abstract:
An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.
Keywords: Cahn-Hilliard equation, miscibility gap, phase separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20542278 Efficient Study of Substrate Integrated Waveguide Devices
Authors: J. Hajri, H. Hrizi, N. Sboui, H. Baudrand
Abstract:
This paper presents a study of SIW circuits (Substrate Integrated Waveguide) with a rigorous and fast original approach based on Iterative process (WCIP). The theoretical suggested study is validated by the simulation of two different examples of SIW circuits. The obtained results are in good agreement with those of measurement and with software HFSS.
Keywords: Convergence study, HFSS, Modal decomposition, SIW Circuits, WCIP Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20272277 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method
Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati
Abstract:
Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10132276 Accuracy of Peak Demand Estimates for Office Buildings Using eQUEST
Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett
Abstract:
The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, US. NJ DMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.
Keywords: Building Energy Modeling, eQUEST, peak demand, smart meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822275 Fractal Analysis of 16S rRNA Gene Sequences in Archaea Thermophiles
Authors: T. Holden, G. Tremberger, Jr, E. Cheung, R. Subramaniam, R. Sullivan, N. Gadura, P. Schneider, P. Marchese, A. Flamholz, T. Cheung, D. Lieberman
Abstract:
A nucleotide sequence can be expressed as a numerical sequence when each nucleotide is assigned its proton number. A resulting gene numerical sequence can be investigated for its fractal dimension in terms of evolution and chemical properties for comparative studies. We have investigated such nucleotide fluctuation in the 16S rRNA gene of archaea thermophiles. The studied archaea thermophiles were archaeoglobus fulgidus, methanothermobacter thermautotrophicus, methanocaldococcus jannaschii, pyrococcus horikoshii, and thermoplasma acidophilum. The studied five archaea-euryarchaeota thermophiles have fractal dimension values ranging from 1.93 to 1.97. Computer simulation shows that random sequences would have an average of about 2 with a standard deviation about 0.015. The fractal dimension was found to correlate (negative correlation) with the thermophile-s optimal growth temperature with R2 value of 0.90 (N =5). The inclusion of two aracheae-crenarchaeota thermophiles reduces the R2 value to 0.66 (N = 7). Further inclusion of two bacterial thermophiles reduces the R2 value to 0.50 (N =9). The fractal dimension is correlated (positive) to the sequence GC content with an R2 value of 0.89 for the five archaea-euryarchaeota thermophiles (and 0.74 for the entire set of N = 9), although computer simulation shows little correlation. The highest correlation (positive) was found to be between the fractal dimension and di-nucleotide Shannon entropy. However Shannon entropy and sequence GC content were observed to correlate with optimal growth temperature having an R2 of 0.8 (negative), and 0.88 (positive), respectively, for the entire set of 9 thermophiles; thus the correlation lacks species specificity. Together with another correlation study of bacterial radiation dosage with RecA repair gene sequence fractal dimension, it is postulated that fractal dimension analysis is a sensitive tool for studying the relationship between genotype and phenotype among closely related sequences.
Keywords: Fractal dimension, archaea thermophiles, Shannon entropy, GC content
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792274 Navigation and Guidance System Architectures for Small Unmanned Aircraft Applications
Authors: Roberto Sabatini, Celia Bartel, Anish Kaharkar, Tesheen Shaid, Subramanian Ramasamy
Abstract:
Two multisensor system architectures for navigation and guidance of small Unmanned Aircraft (UA) are presented and compared. The main objective of our research is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance in all phases of flight of small UA, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN are compared and the Appearance-Based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway centreline and body rates. Additionally, we address the possible synergies of VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, and the use of Aircraft Dynamics Model (ADM) to provide additional information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UA platform in real-time. The key mathematical models describing the two architectures i.e., VBN-IMU-GNSS (VIG) system and VIGADM (VIGA) system are introduced. The first architecture uses VBN and GNSS to augment the MEMS-IMU. The second mode also includes the ADM to provide augmentation of the attitude channel. Simulation of these two modes is carried out and the performances of the two schemes are compared in a small UA integration scheme (i.e., AEROSONDE UA platform) exploring a representative cross-section of this UA operational flight envelope, including high dynamics manoeuvres and CAT-I to CAT-III precision approach tasks. Simulation of the first system architecture (i.e., VIG system) shows that the integrated system can reach position, velocity and attitude accuracies compatible with the Required Navigation Performance (RNP) requirements. Simulation of the VIGA system also shows promising results since the achieved attitude accuracy is higher using the VBN-IMU-ADM than using VBN-IMU only. A comparison of VIG and VIGA system is also performed and it shows that the position and attitude accuracy of the proposed VIG and VIGA systems are both compatible with the RNP specified in the various UA flight phases, including precision approach down to CAT-II.
Keywords: Global Navigation Satellite System (GNSS), Lowcost Navigation Sensors, MEMS Inertial Measurement Unit (IMU), Unmanned Aerial Vehicle, Vision Based Navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32152273 Comparison of Reliability Systems Based Uncertainty
Authors: A. Aissani, H. Benaoudia
Abstract:
Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12552272 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying
Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae
Abstract:
An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.Keywords: FEM, HVOF, Interfacial Temperature, Splat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18882271 Applying Wavelet Transform to Ferroresonance Detection and Protection
Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang
Abstract:
Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.
Keywords: Ferroresonance, Wavelet Transform, Intelligent Electronic Device, Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16602270 Universal Current-Mode OTA-C KHN Biquad
Authors: Dalibor Biolek, Viera Biolková, Zden─øk Kolka
Abstract:
A universal current-mode biquad is described which represents an economical variant of well-known KHN (Kerwin, Huelsman, Newcomb) voltage-mode filter. The circuit consists of two multiple-output OTAs and of two grounded capacitors. Utilizing simple splitter of the input current and a pair of jumpers, all the basic 2nd-order transfer functions can be implemented. The principle is verified by Spice simulation on the level of a CMOS structure of OTAs.Keywords: Biquad, current mode, OTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24152269 Design and Implementation of TMS320C31 DSP and FPGA for Conventional Direct Torque Control (DTC) of Induction Machines
Authors: C. L. Toh, N. R. N. Idris, A. H. M. Yatim
Abstract:
This paper introduces a new digital logic design, which combines the DSP and FPGA to implement the conventional DTC of induction machine. The DSP will be used for floating point calculation whereas the FPGA main task is to implement the hysteresis-based controller. The emphasis is on FPGA digital logic design. The simulation and experimental results are presented and summarized.Keywords: DTC, DSP, FPGA, induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19832268 Study of Thermal Effects while Filling an Empty Tank
Authors: Y. Kerboua Ziari, M. Benouahlima, A. Benzaoui
Abstract:
We are interested in this paper to the thermal effects occurring during the filling of hydrogen tanks. The consequence of this heating on the storage performance of these speakers was appreciated. The motivation comes from the fact that the development of hydrogen as an energy carrier of the future will require strong evolution in the field of storage modes to smaller, less expensive lighter, with a strong security interest and considerable autonomy.
Keywords: Hydrogen, Fuel, Storage, Energy, Modeling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14512267 Haemodynamics Study in Subject Specific Carotid Bifurcation Using FSI
Authors: S. M. Abdul Khader, Anurag Ayachit, Raghuvir Pai, K. A. Ahmed, V. R. K. Rao, S. Ganesh Kamath
Abstract:
The numerical simulation has made tremendous advances in investigating the blood flow phenomenon through elastic arteries. Such study can be useful in demonstrating the disease progression and hemodynamics of cardiovascular diseases such as atherosclerosis. In the present study, patient specific case diagnosed with partially stenosed complete right ICA and normal left carotid bifurcation without any atherosclerotic plaque formation is considered. 3D patient specific carotid bifurcation model is generated based on CT scan data using MIMICS-4.0 and numerical analysis is performed using FSI solver in ANSYS-14.5. The blood flow is assumed to be incompressible, homogenous and Newtonian, while the artery wall is assumed to be linearly elastic. The two-way sequentially coupled transient FSI analysis is performed using FSI solver for three pulse cycles. The hemodynamic parameters such as flow pattern, Wall Shear Stress, pressure contours and arterial wall deformation are studied at the bifurcation and critical zones such as stenosis. The variation in flow behavior is studied throughout the pulse cycle. Also, the simulation results reveal that there is a considerable increase in the flow behavior in stenosed carotid in contrast to the normal carotid bifurcation system. The investigation also demonstrates the disturbed flow pattern especially at the bifurcation and stenosed zone elevating the hemodynamics, particularly during peak systole and later part of the pulse cycle. The results obtained agree well with the clinical observation and demonstrates the potential of patient specific numerical studies in prognosis of disease progression and plaque rupture.Keywords: Fluid-Structure Interaction, arterial stenosis, Wall Shear Stress, Carotid Artery Bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22962266 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System
Authors: M.Suganthi, M.Madheswaran
Abstract:
This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.Keywords: Breast Cancer, Mammogram, and Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14812265 The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver and Pancreatic Grafts
Authors: C. S. Mammas, A. Lazaris, A. S. Mamma-Graham, G. Kostopanagiotou, C. Lemonidou, J. Mantas, E. Patsouris
Abstract:
Introduction: The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the remote evaluation of the grafts. It has been estimated that even in well-organized transplant systems an average of 8% to 14% of the grafts (G) that arrive at the recipient hospitals may be considered as diseased, injured, damaged or improper for transplantation. Digital microscopy adds information on a microscopic level about the grafts in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G, will arrive at the recipient hospital for implantation. Aim: Ergonomics of Digital Microscopy (DM) based on virtual slides, on Telemedicine Systems (TS) for Tele-Pathological (TPE) evaluation of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of Renal Graft (RG), Liver Graft (LG) and Pancreatic Graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying Virtual Slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included: a. Development of an OTE-TS similar Experimental Telemedicine System (Exp.-TS), b. Simulation of the integration of TS with the VS based microscopic TPE of RG, LG and PG applying DM. Simulation of the DM based TPE was performed by 2 specialists on a total of 238 human Renal Graft (RG), 172 Liver Graft (LG) and 108 Pancreatic Graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to diagnose accurately the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a Desktop, followed by the ES of the applied Exp.-TS. Tablet and Mobile-Phone ES seem significantly risky for the application of DM in OT (p<.001). Conclusion: To make the largest reduction in errors and adverse events referring to the quality of the grafts, it will take application of human factors engineering to procurement, design, audit, and aware ness-raising activities. Consequently, it will take an investment in new training, people, and other changes to management activities for DM in OT. The simulating VS based TPE with DM of RG, LG and PG tissues after retrieval; seem feasible and reliable and dependable on the size of the electronic space of the applied TS, for remote prevention of diseased grafts from being retrieved and/or sent to the recipient hospital and for post-grafting and pre-transplant planning.Keywords: Organ Transplantation, Tele-Pathology, Digital Microscopy, Virtual Slides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18982264 The Current State of Human Gait Simulator Development
Authors: V. Musalimov, I. Stepanov, Y. Monahov, A. Safonov
Abstract:
This report examines the current state of human gait simulator development based on the human hip joint model. This unit will create a database of human gait types, useful for setting up and calibrating Mechano devices, as well as the creation of new systems of rehabilitation, exoskeletons and walking robots. The system has many opportunities to configure the dimensions and stiffness, while maintaining relative simplicity.Keywords: Hip joint, human gait, physiotherapy, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12932263 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model
Authors: Khalid Alammar
Abstract:
Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.
Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24472262 Effect of Modification and Expansion on Emergence of Cooperation in Demographic Multi-Level Donor-Recipient Game
Authors: Tsuneyuki Namekata, Yoko Namekata
Abstract:
It is known that the mean investment evolves from a very low initial value to some high level in the Continuous Prisoner's Dilemma. We examine how the cooperation level evolves from a low initial level to a high level in our Demographic Multi-level Donor-Recipient situation. In the Multi-level Donor-Recipient game, one player is selected as a Donor and the other as a Recipient randomly. The Donor has multiple cooperative moves and one defective move. A cooperative move means the Donor pays some cost for the Recipient to receive some benefit. The more cooperative move the Donor takes, the higher cost the Donor pays and the higher benefit the Recipient receives. The defective move has no effect on them. Two consecutive Multi-level Donor-Recipient games, one as a Donor and the other as a Recipient, can be viewed as a discrete version of the Continuous Prisoner's Dilemma. In the Demographic Multi-level Donor-Recipient game, players are initially distributed spatially. In each period, players play multiple Multi-level Donor-Recipient games against other players. He leaves offspring if possible and dies because of negative accumulated payoff of him or his lifespan. Cooperative moves are necessary for the survival of the whole population. There is only a low level of cooperative move besides the defective move initially available in strategies of players. A player may modify and expand his strategy by his recent experiences or practices. We distinguish several types of a player about modification and expansion. We show, by Agent-Based Simulation, that introducing only the modification increases the emergence rate of cooperation and introducing both the modification and the expansion further increases it and a high level of cooperation does emerge in our Demographic Multi-level Donor-Recipient Game.
Keywords: Agent-based simulation, donor-recipient game, emergence of cooperation, spatial structure, TFT, TF2T.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8752261 Evaluation of Coupling Factor in RF Inductively Coupled Systems
Authors: Rômulo Volpato, Filipe Ramos, Paulo Crepaldi, Michel Santana, Tales C Pimenta
Abstract:
This work presents an approach for the measurement of mutual inductance on near field inductive coupling. The mutual inductance between inductive circuits allows the simulation of energy transfer from reader to tag, that can be used in RFID and powerless implantable devices. It also allows one to predict the maximum voltage in the tag of the radio-frequency system.Keywords: RFID, Inductive Coupling, Energy Transfer, Implantable Device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23272260 Study of Aerodynamic Characteristics of the Unmanned Aircraft in the Wake
Authors: O. Solovyov, S. Eryomenko, V. Kobrin, V. Chmovzh
Abstract:
The methodology of numerical simulation and calculation of aerodynamic characteristics of aircraft taking into account impact of wake on it has been developed. The results of numerical experiment in comparison with the data obtained in the wind tunnel are presented. Efficiency of methodology of calculation and the reliability of the results is shown.
Keywords: Unmanned aircraft, vortex wake, aerodynamic characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17872259 Representation of Power System for Electromagnetic Transient Calculation
Authors: P. Sowa
Abstract:
The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18972258 Drone On-time Obstacle Avoidance for Static and Dynamic Obstacles
Authors: Herath MPC Jayaweera, Samer Hanoun
Abstract:
Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GMEs velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks including their tendency to generate longer routes when the obstacles are sideways of the drones route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilize on most types of drones that have basic distance measurement sensors and autopilot supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.
Keywords: Drones, force field methods, obstacle avoidance, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822257 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35782256 Development of Effective Cooling Schemes of Gas Turbine Blades Based on Computer Simulation
Authors: Pasayev, A., C. Askerov, R. Sadiqov, C. Ardil
Abstract:
In contrast to existing of calculation of temperature field of a profile part a blade with convective cooling which are not taking into account multi connective in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM AND FDM) numerical methods from the point of view of a realization on the PC. The theoretical substantiation of these methods is proved by the appropriate theorems.
Keywords: multi coherent systems, method of the boundary integrated equations, singular operators, gas turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492255 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System
Authors: Benjamin C. Agwah, Paulinus C. Eze
Abstract:
Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.
Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3432254 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept
Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman
Abstract:
Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967