Search results for: natural convection in enclosure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1734

Search results for: natural convection in enclosure

1644 Finite Volume Method for Flow Prediction Using Unstructured Meshes

Authors: Juhee Lee, Yongjun Lee

Abstract:

In designing a low-energy-consuming buildings, the heat transfer through a large glass or wall becomes critical. Multiple layers of the window glasses and walls are employed for the high insulation. The gravity driven air flow between window glasses or wall layers is a natural heat convection phenomenon being a key of the heat transfer. For the first step of the natural heat transfer analysis, in this study the development and application of a finite volume method for the numerical computation of viscous incompressible flows is presented. It will become a part of the natural convection analysis with high-order scheme, multi-grid method, and dual-time step in the future. A finite volume method based on a fully-implicit second-order is used to discretize and solve the fluid flow on unstructured grids composed of arbitrary-shaped cells. The integrations of the governing equation are discretised in the finite volume manner using a collocated arrangement of variables. The convergence of the SIMPLE segregated algorithm for the solution of the coupled nonlinear algebraic equations is accelerated by using a sparse matrix solver such as BiCGSTAB. The method used in the present study is verified by applying it to some flows for which either the numerical solution is known or the solution can be obtained using another numerical technique available in the other researches. The accuracy of the method is assessed through the grid refinement.

Keywords: Finite volume method, fluid flow, laminar flow, unstructured grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
1643 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption

Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie

Abstract:

This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.

Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
1642 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium

Authors: M. Meenasaranya, S. Saravanan

Abstract:

Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.

Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
1641 MHD Mixed Convection in a Vertical Porous Channel

Authors: B. Fersadou, H. Kahalerras

Abstract:

This work deals with the problem of MHD mixed convection in a completely porous and differentially heated vertical channel. The model of Darcy-Brinkman-Forchheimer with the Boussinesq approximation is adopted and the governing equations are solved by the finite volume method. The effects of magnetic field and buoyancy force intensities are given by the Hartmann and Richardson numbers respectively, as well as the Joule heating represented by Eckert number on the velocity and temperature fields, are examined. The main results show an augmentation of heat transfer rate with the decrease of Darcy number and the increase of Ri and Ha when Joule heating is neglected.

Keywords: Heat sources, magnetic field, mixed convection, porous channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1640 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana

Abstract:

A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.

Keywords: Rayleigh-Bénard convection, heat transport, porous media, generalized Lorenz model, coupled Ginzburg-Landau model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
1639 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
1638 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1637 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls

Authors: S. Jani, M. Mahmoodi, M. Amini

Abstract:

Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.

Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
1636 Prediction of Unsteady Forced Convection over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nanoparticles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: Forced convection, Square cylinder, nanofluid, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
1635 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1634 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet

Authors: A. Abdedou, K. Bouhadef

Abstract:

The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.

Keywords: Forced convection, oriented confined jet, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
1633 Delaunay Triangulations Efficiency for Conduction-Convection Problems

Authors: Bashar Albaalbaki, Roger E. Khayat

Abstract:

This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.

Keywords: Conduction-convection problems, Delaunay triangulation, discretization error, finite volume method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
1632 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature

Authors: Ishak Hashim, Ammar Alsabery

Abstract:

The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.

Keywords: Conjugate free convection, nanofluid, spatial temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1631 Rayleigh-Bénard-Taylor Convection of Newtonian Nanoliquid

Authors: P. G. Siddheshwar, T. N. Sakshath

Abstract:

In the paper we make linear and non-linear stability analyses of Rayleigh-Bénard convection of a Newtonian nanoliquid in a rotating medium (called as Rayleigh-Bénard-Taylor convection). Rigid-rigid isothermal boundaries are considered for investigation. Khanafer-Vafai-Lightstone single phase model is used for studying instabilities in nanoliquids. Various thermophysical properties of nanoliquid are obtained using phenomenological laws and mixture theory. The eigen boundary value problem is solved for the Rayleigh number using an analytical method by considering trigonometric eigen functions. We observe that the critical nanoliquid Rayleigh number is less than that of the base liquid. Thus the onset of convection is advanced due to the addition of nanoparticles. So, increase in volume fraction leads to advanced onset and thereby increase in heat transport. The amplitudes of convective modes required for estimating the heat transport are determined analytically. The tri-modal standard Lorenz model is derived for the steady state assuming small scale convective motions. The effect of rotation on the onset of convection and on heat transport is investigated and depicted graphically. It is observed that the onset of convection is delayed due to rotation and hence leads to decrease in heat transport. Hence, rotation has a stabilizing effect on the system. This is due to the fact that the energy of the system is used to create the component V. We observe that the amount of heat transport is less in the case of rigid-rigid isothermal boundaries compared to free-free isothermal boundaries.

Keywords: Nanoliquid, rigid-rigid, rotation, single-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
1630 Unsteady Transient Free Convective Flow of an Incompressible Viscous Fluid under Influence of Uniform Transverse Magnetic Field

Authors: Praveen Saraswat, Vipin Kumar Verma, Rudraman Singh

Abstract:

The unsteady transient free convection flow of an incompressible dissipative viscous fluid between parallel plates at different distances have been investigated under porous medium. Due to presence of heat flux under the influence of uniform transverse magnetic field the velocity distribution and the temperature distribution, is shown graphically. Since exact solution is not possible so we find parametrical solution by perturbation technique. The result is shown in graph for different parameters. We notice that heat generation effects fluid velocity keeping in which of free convection which cools.

Keywords: Transient, Convection, MHD, Viscous, Porous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1629 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
1628 Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid

Authors: P. G. Siddheshwar, B. R. Revathi

Abstract:

The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.

Keywords: Dielectric liquid, Nusselt number, amplitude equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1627 Marangoni Convection in a Fluid Saturated Porous Layer with a Deformable Free Surface

Authors: Nor Fadzillah Mohd Mokhtar, Norihan Md Arifin, Roslinda Nazar, Fudziah Ismail, MohamedSuleiman

Abstract:

The stability analysis of Marangoni convection in porous media with a deformable upper free surface is investigated. The linear stability theory and the normal mode analysis are applied and the resulting eigenvalue problem is solved exactly. The Darcy law and the Brinkman model are used to describe the flow in the porous medium heated from below. The effect of the Crispation number, Bond number and the Biot number are analyzed for the stability of the system. It is found that a decrease in the Crispation number and an increase in the Bond number delay the onset of convection in porous media. In addition, the system becomes more stable when the Biot number is increases and the Daeff number is decreases.

Keywords: Deformable, Marangoni, Porous, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1626 Uniform Solution on the Effect of Internal Heat Generation on Rayleigh-Benard Convection in Micropolar Fluid

Authors: Izzati K. Khalid, Nor Fadzillah M. Mokhtar, Norihan Md. Arifin

Abstract:

The effect of internal heat generation is applied to the Rayleigh-Benard convection in a horizontal micropolar fluid layer. The bounding surfaces of the liquids are considered to be rigid-free, rigid-rigid and free-free with the combination of isothermal on the spin-vanishing boundaries. A linear stability analysis is used and the Galerkin method is employed to find the critical stability parameters numerically. It is shown that the critical Rayleigh number decreases as the value of internal heat generation increase and hence destabilize the system.

Keywords: Internal heat generation, micropolar fluid, rayleighbenard convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
1625 Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion

Authors: Arash Karimipour, M. Afrand, M. M. Bazofti

Abstract:

The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.

Keywords: Nanofluid, Top lid oscillation, Mixed convection, Volume fraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
1624 Effect of Rotation Rate on Chemical Segragation during Phase Change

Authors: Nouri Sabrina, Benzeghiba Mohamed, Ghezal Abderrahmane

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in vertical bridgman (vb) crystal growth. Calculations were performed in unsteady state. The extended darcy model, which includes the time derivative and coriolis terms, has been employed in the momentum equation. It’s found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetic field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axially. When the convection is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: Numerical Simulation, Heat and mass transfer, vertical solidification, chemical segregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1623 MHD Unsteady Free Convection of Heat and Mass Transfer Flow through Porous Medium with Time Dependent Suction and Constant Heat Source/Sink

Authors: Praveen Saraswat, Rudraman Singh

Abstract:

In this paper, we have investigated the free convection MHD flow due to heat and mass transfer through porous medium bounded by an infinite vertical non-conducting porous plate with time dependent suction under the influence of uniform transverse magnetic field of strength H0. When Temperature (T) and Concentration (C) at the plate is oscillatory with time about a constant non-zero mean. The velocity distribution, the temperature distribution, co-efficient of skin friction and role of heat transfer is investigated. Here the partial differential equations are involved. Exact solution is not possible so approximate solution is obtained and various graphs are plotted.

Keywords: Time Dependent Suction, Convection, MHD, Porous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1622 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
1621 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model

Authors: Sameena Tarannum, S. Pranesh

Abstract:

A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.

Keywords: Couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
1620 Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

Authors: Naveed Ahmed, Gunar Matthies

Abstract:

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

Keywords: Convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1619 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

Authors: Kai-Long Hsiao

Abstract:

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
1618 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source

Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo

Abstract:

Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.

Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
1617 Numerical Simulation of Convection Heat Transfer in a Lid-Driven Cavity with an Open Side

Authors: M.Jafari, M.Farhadi, K.sedighi, E.Fattahi

Abstract:

In this manuscript, the LBM is applied for simulating of Mixed Convection in a Lid-Driven cavity with an open side. The cavity horizontal walls are insulated while the west Lid-driven wall is maintained at a uniform temperature higher than the ambient. Prandtl number (Pr) is fixed to 0.71 (air) while Reynolds number (Re) , Richardson number (Ri) and aspect ratio (A) of the cavity are changed in the range of 50-150 , of 0.1-10 and of 1-4 , respectively. The numerical code is validated for the standard square cavity, and then the results of an open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number (Nu) on lid- driven wall decreases and with same Reynolds number (Re) by increasing of aspect ratio (A), Richardson number plays more important role in heat transfer rate.

Keywords: Lattice Boltzmann Method, Open ended cavity, Mixed convection, Lid-driven cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
1616 An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method

Authors: Nopparat Pochai, Rujira Deepana

Abstract:

Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.

Keywords: Finite difference, One-dimensional, Steady state, Waterpollution control, Optimization, Convection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
1615 Fourth Order Accurate Free Convective Heat Transfer Solutions from a Circular Cylinder

Authors: T. V. S. Sekhar, B. Hema Sundar Raju

Abstract:

Laminar natural-convective heat transfer from a horizontal cylinder is studied by solving the Navier-Stokes and energy equations using higher order compact scheme in cylindrical polar coordinates. Results are obtained for Rayleigh numbers of 1, 10, 100 and 1000 for a Prandtl number of 0.7. The local Nusselt number and mean Nusselt number are calculated and compared with available experimental and theoretical results. Streamlines, vorticity - lines and isotherms are plotted.

Keywords: Higher order compact scheme, Navier-Stokes equations, Energy equation, Natural convection, Boussinesq's approximation and Mean Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664