{"title":"Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption","authors":"Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie","volume":51,"journal":"International Journal of Physical and Mathematical Sciences","pagesStart":235,"pagesEnd":241,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/7055","abstract":"This paper considers the effect of heat generation\r\nproportional l to (T - T\u221e )p , where T is the local temperature and T\u221e\r\nis the ambient temperature, in unsteady free convection flow near the\r\nstagnation point region of a three-dimensional body. The fluid is\r\nconsidered in an ambient fluid under the assumption of a step change\r\nin the surface temperature of the body. The non-linear coupled partial\r\ndifferential equations governing the free convection flow are solved\r\nnumerically using an implicit finite-difference method for different\r\nvalues of the governing parameters entering these equations. The\r\nresults for the flow and heat characteristics when p \u2264 2 show that\r\nthe transition from the initial unsteady-state flow to the final steadystate\r\nflow takes place smoothly. The behavior of the flow is seen\r\nstrongly depend on the exponent p.","references":"[1] Postelnicu, A., and Pop, I. Similarity solutions of free convection\r\nboundary layers over vertical and horizontal surface in porous media\r\nwith internal heat generation, Int. Comm. Heat Mass Transf. 26, (1999)\r\n1183-1191.\r\n[2] Foraboschi, F. P., and Federico, I. D. Heat transfer in a laminar flow of\r\nnon-Newtonian heat generating fluids. Int. J. Heat Mass Transfer 7,\r\n(1964), 315.\r\n[3] Vajravelu, K., and Hadjinicolaou, A. Heat transfer in a viscous fluid\r\nover a stretching sheet with viscous dissipation and internal heat\r\ngeneration. Int. Comm. Heat Mass Transfer 20, (1993) 417-430.\r\n[4] Chamkha, A. J., and Camille, I. Effects of heat generation\/absorption\r\nand the thermophoresis on hydromagnetic flow with heat and mass\r\ntransfer over a flat plate. Int. J. Numer. Meth. Heat Fluid Flow 10(4),\r\n(2000) 432-438.\r\n[5] Mendez, F., and Trevino, C. The conjugate conduction-natural\r\nconvection heat transfer along a thin vertical plate with non-uniform\r\ninternal heat generation. Int. J. Heat Mass Transfer 43, (2000) 2739-\r\n2748.\r\n[6] Molla, M. M., Hossain, M. A., and Yao, L. S. Natural convection flow\r\nalong a vertical wavy surface with heat generation\/absorption. Int. J.\r\nTherm. Sci. 43, (2004) 157-163.\r\n[7] Mohammadein, A. A., and Gorla, R. S. R. (2001). Heat transfer in a\r\nmicropolar fluid over a stretching sheet with viscous dissipation and\r\ninternal heat generation. Int. J. Numer. Meth. Heat Fluid Flow. 11(1),\r\n50-58.\r\n[8] Rahman, M. M., Eltayeb, I. A., and Rahman, S. M. M. (2009). Thermomicropolar\r\nfluid flow along a vertical permeable plate with uniform\r\nsurface heat flux in the presence of heat generation. Therm. Sci. 13(1),\r\n23-36.\r\n[9] Magyari, E., and Chamkha, A. J. (2010). Combined effect of heat\r\ngeneration or absorption and first-order chemical reaction on micropolar\r\nfluid flows over a uniformly stretched permeable surface: The full\r\nanalytical solution. Int. J. Therm. Sci 1-8.\r\n[10] Mohamed, R. A. (2009). Double-diffusive convection-radiation\r\ninteraction on unsteady MHD flow over a vertical moving porous plate\r\nwith heat generation and soret effects. Appl. Math. Sci. 3(13), 629-651.\r\n[11] Jawdat, J. M., and Hashim, I. (2010). Low Prandtl number chaotic\r\nconvection in porous media with uniform internal heat generation. Int.\r\nComm. Heat Mass Transfer. 37, 629-636.\r\n[12] Ferdousi, A., and Alim, M. A. (2010). Natural convection flow from a\r\nporous vertical plate in the presence of heat generation. D. Int. Uni. J.\r\nSci. Tech. 5(1), 73-80.\r\n[13] Veena, P. H., Abel, S., rajagopal, K., and Pravin, V. K. (2006). Heat\r\ntransfer in a visco-elastic fluid past a stretching sheet with viscous\r\ndissipation and internal heat generation. Z. Angew. Math. Phys. 57, 447-\r\n463.\r\n[14] Molla, M. M., Paul, S. C., and Hossain, M. A. (2009). Natural\r\nconvection flow from a horizontal circular cylinder with uniform heat\r\nflux in presence of heat generation. Appl. Math. Modelling. 33, 3226-\r\n3236.\r\n[15] Mahdy, A. (2010). Effect of chemical reaction and heat generation or\r\nabsorption on double-diffusive convection from a vertical truncated cone\r\nin porous media with variable viscosity. Int. Comm. Heat Mass Transfer.\r\n37, 548-554.\r\n[16] Siddiqa, S., Asghar, S., and Hossain, M. A. (2010). Natural convection\r\nflow over an inclined flat plate with internal heat generation and variable\r\nviscosity. Math. Comp. Modelling. 52, 1739-1751.\r\n[17] Hiemenz, K. (1911), Die Grenzschicht an einem in den gleichformigen\r\nFlussigkeitsstrom eigetauchten geraden Kreiszylinder. Dinglers Polym.\r\nJ., Vol. 326, pp. 321-410.\r\n[18] Schlichting, H. Boundary layer theory. McGraw-Hill Book Co. (1986).\r\n[19] Bhattacharyya, S., Gupta, A.S. (1998). MHD flow and heat transfer at a\r\ngeneral three-dimensional stagnation point. Int. J. Non-Linear Mech. 33,\r\n125.\r\n[20] Poots, G. (1964). Laminar free convection on the lower stagnation point\r\non an isothermal curved surface. Int. J. Heat Mass Transfer 7, 863.\r\n[21] Banks, W.H.H. (1974). Laminar free convection flow at a stagnation\r\npoint of attachment on an isothermal surfaces. J. Engng. Math. 8, 45.\r\n[22] Sharidan, S., Amin, N., and Pop, I. (2007). G-Jitter free convection flow\r\nin the stagnation point of a three-dimensional body. Mech. Res. Comm.\r\n34, 115-122.\r\n[23] Ingham, D.B., Merkin, J.H., Pop, I. (1984). Unsteady free convection of\r\na stagnation point of attachment on an isothermal surface. Int. J. Math.\r\nMath. Phys. 7, 599.\r\n[24] Slaouti A, Takhar HS and Nath G. (1998). Unsteady free convection\r\nflow in the stagnation-point region of a three-dimensional body.\r\nInternational Journal Heat and Mass Transfer 41, 3397.\r\n[25] Kumari, M., and Nath, G. (1986). Unsteady free convection MHD\r\nboundary layer flow near a three-dimensional stagnation point. Indian. J.\r\nPure Appl. Math. 17(7), 957-968.\r\n[26] Hayat, T., Qasim, M., and Abbas, Z. (2010). Homotopy solution for the\r\nunsteady three-dimensional MHD flow and mass transfer in a porous\r\nspace. Comm. Nonlinear Sci. Numer. Simulat. 15, 2375-2387.\r\n[27] M.A. Admon, S. Shafie and I. Pop ( 2011). Unsteady Free Convection\r\nFlow near the Stagnation Point of a Three-dimensional Body, Journal of\r\nApplied Sciences (Accepted)\r\n[28] Mealey, L., and Merkin, J.H. (2008). Free convection boundary layers\r\non a vertical surface in a heat generating porous medium. IMA J. Appl.\r\nMath. 73, 231.\r\n[29] Merkin, J.H. (2009). Natural convective boundary-layer flow in a heat\r\ngenerating porous medium with a prescribed wall heat flux. J. Appl.\r\nMath. Phys. (ZAMP) 60, 543.\r\n[30] Merkin, J.H. (2010). Free convection boundary layers on a vertical\r\nsurface in a heat generating porous medium: Similarity solutions. Quart.\r\nJ. Mech. Applied Math. (online).\r\n[31] Seshadri, R., Sreeshylan, N., Nath, G., 2002. Unsteady mixed\r\nconvection flow in the stagnation region of a heated vertical plate due to\r\nimpulsively motion. Int. J. Heat Mass Transfer. 45, 1345.\r\n[32] Keller H. B. A new difference scheme for parabolic problems, in\r\nnumerical solutions of partial differential equations (B.Hubbard, ed).\r\nNew York, Academic Press. 2: 327-350, 1971.\r\n[33] Hussain,S. and Hossain, M.A. Natural convection flow from a vertical\r\npermeable flat plate with variable surface temperature and species\r\nconcentration. Engineering Computations 2000; 17, 7: 789 - 812.\r\n[34] Sharidan, S, Amin,N and Pop,I. g-jiitter induced free convection near a\r\ntwo-dimensional stagnation point in micropolar fluids. International\r\nJournal of Applied Mechanics and Engineering.Vol. 10, No. 3, 311-328,\r\n2005.\r\n[35] Cebeci, T., Bradshaw, P., 1984. Physical and Computational Aspects of\r\nConvective Heat Transfer. Springer, New York.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 51, 2011"}