
 

 

 
Abstract—This work is a comparative study on the effect of 

Delaunay triangulation algorithms on discretization error for 
conduction-convection conservation problems. A structured 
triangulation and many unstructured Delaunay triangulations using 
three popular algorithms for node placement strategies are used. The 
numerical method employed is the vertex-centered finite volume 
method. It is found that when the computational domain can be meshed 
using a structured triangulation, the discretization error is lower for 
structured triangulations compared to unstructured ones for only low 
Peclet number values, i.e. when conduction is dominant. However, as 
the Peclet number is increased and convection becomes more 
significant, the unstructured triangulations reduce the discretization 
error. Also, no statistical correlation between triangulation angle 
extremums and the discretization error is found using 200 samples of 
randomly generated Delaunay and non-Delaunay triangulations. Thus, 
the angle extremums cannot be an indicator of the discretization error 
on their own and need to be combined with other triangulation quality 
measures, which is the subject of further studies.  
 

Keywords—Conduction-convection problems, Delaunay 
triangulation, discretization error, finite volume method. 

I. INTRODUCTION 

HIS work, investigates the effect of triangulation 
methodology on the finite volume discretization error for 

conduction-convection problems. We also examine how 
different triangulation scheme impact on error changes for 
conduction dominated cases and convection dominated ones by 
studying the effect of the Péclet number on the discretization 
error.  

Here, the triangulation approach, when vertices for 
triangulation are predetermined, is the Delaunay triangulation 
[1]; however, our focus is on algorithms that place the interior 
vertices, or Steiner points, with a given triangulation domain 
boundary. The following three node insertion algorithms are 
used in this study: The triangle splitting method of Weatherill 
and Hassan [2], the segment and triangle splitting approach of 
Shewchuk [3], commonly known as TRIANGLE, and 
advancing front technique by Lo [4], [5]. For brevity, hereafter 
the designations WH, TR and AF refer to node insertion 
methods of, respectively, Weatherill and Hassan, TRIANGLE 
and Advancing front.  

Note that there are many other competitive algorithms in the 
literature that are not considered here. For example, Bern et al. 
[6], employing quadtree point insertion scheme, offer several 
algorithms for triangulation that guarantee satisfaction of user 
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provided bounds on angles acuteness or obtuseness. Bern et al. 
[7] offered a circle packing point insertion algorithm that 
ensures all angles in the ensuing triangulation are less than π/2. 
Üngör [8] introduced the concept of “off-centers”, and Dorado 
et al. [9] combined advancing front and circle packing 
algorithms. More details on point insertion and Delaunay 
triangulation can be found in [10], [11] and [5].  

One can classify the mainstream Steiner point insertion 
algorithms based on the nature of Steiner points. For example, 
Weatherill and Hassan [2] approach introduces new points at 
the geometric centers of Delaunay triangles, while Shewchuk 
[3] scheme employs the midpoint of segments and 
circumcenters of skinny triangles for point insertion. The 
advancing front method uses the equilateral triangles that are 
built upon the advancing front segments. However, the earlier 
version of the advancing front method places new points on a 
pre-existing grid [4]. Üngör [8] has introduced the Steiner 
points that are ‘off-centers’ meaning that the location of new 
points is derived by moving the circumcenter in a fashion that 
the resulting triangle formed by using the vertices of the 
minimum-length edge of a skinny triangle and the ‘off-center’ 
would have the desired radius to edge ratio. Some triangulation 
algorithms rely on a background mesh like quadtrees [6], [12], 
[13]. Yet another certain algorithm for point insertion involves 
placing the desired number of nodes into random positions in 
the not-yet-meshed domain. For example, Centroidal Voronoi 
Tessellation (CVT) [14]-[16] places Steiner nodes at random 
positions, then draws the Voronoi diagram of the points and 
moves the points (sites of the Voronoi diagram) to the mass 
center of the Voronoi regions. This procedure is repeated until 
location of Voronoi sites and centroid of Voronoi regions 
converge. Another popular two-dimensional meshing approach 
is suggested by Persson and Strang [17] with the triangulation 
routine that is called DISTMESH. In this method, points are 
randomly inserted in the meshing domain. Then, in each 
iteration, first, a Delaunay triangulation performed on the point 
set and second assuming all triangle sides are behaving as 
mechanical springs with the same stiffness, the points are 
allowed to move so that points are in mechanical equilibrium. 
The iterations are repeated until no move is necessary for points 
to be in equilibrium. Both CVT and DISTMESH algorithms 
require determining the number of Steiner points before node 
insertion. The three algorithms studied here do not have such a 
constraint.  

The finite volume method (FVM), which is also called the 
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control-volume finite element method, is the preferred 
approach for solving partial differential equations describing 
fluid flow, heat transfer, and in general the conservation 
equations [18], [19]. Patankar [18] classifies the FVM as special 
case of the finite element method (FEM). It is true that FVM 
like its ancestor, FEM, divides the solution domain to 
subdomains and in certain versions it also uses shape functions 
to describe the dependent variables; however, the main 
difference between the methods lies in the way the governing 
equations are discretized: Unlike mainstream FEM approaches, 
FVM does not employ the variational principle or a weighted 
residual method, the most popular being the Galerkin method. 
FVM discretizes the conservation equations by writing the 
balance of the fluxes of the conserved quantity entering or 
exiting a cell, as well as source terms if present. Thereby, FVM 
is more loyal to the physical meaning of conservation equations 
that it tries to discretize. It is worthwhile to note that there have 
been attempts to modify FEM, particularly the Galerkin 
scheme, for computational fluid dynamics (CFD) problems and 
generally the conservation equations, most notably the Petrov-
Galerkin method [20]. Mizukami and Hughes [21] developed a 
version of Petrov-Galerkin custom-made for triangulations. 
Martinez [22] compared different FVM and FEM schemes for 
convection-conduction equations and has reported no 
significant difference between the methods for steady-state 
linear conservation equations. However, since FVM is the basis 
for the contemporary mainstream approaches for solving CFD 
equations [19], namely the semi-implicit method pressure-
linked equations (SIMPLE) [23] and its derivations [19]; it is 
also selected for this study.  

FVM schemes dealing with conservation equation can be 
classified as vertex-centered or cell-centered methods [19], 
[24]. Vertex-centered methods, first suggested by Winslow [25] 
for Poisson equations, create the control volumes around the 
vertices of the mesh by connecting the centroid of adjacent 
faces or cells whereas in cell-centered methods the faces or 
cells, depending on the problem being two or three dimensional, 
play the role of control volumes. While the geometric concept 
embedded in the cell-centered idea is easier than its counterpart, 
the vertex-based scheme, the discretization methodology is 
more complicated to compensate for the fact that a line 
connecting neighboring cells is not necessarily perpendicular to 
their boundary. The vertex-based methods on the other hand, 
although require additional computational effort to obtain the 
cell geometry from the triangulation geometry, enjoy a 
straightforward discretization scheme. Further, the vertex-
based methods can take advantage of the shape function 
concept borrowed from FEM: Much like Petrov-Galerkin 
schemes, vertex-based methods embed the upstream concept in 
the shape function. Due to aforementioned reasoning, the 
vertex-based method of Baliga and Patankar [26] is considered 
in this study. The work of Baliga and Patankar [26] is among 
the first extensions of grid-based FVM to triangular meshes. 
Soon afterwards, these authors have devised a version of the 
SIMPLE method suitable for triangulations [27], [28]. Note that 
Prakash [29] as well as Hookey et al. [30] improved the FVM 
for general conservation equations when a source term is 

present. The interested reader is referred to [22] and [19].  
Babuška and Aziz [31] proved that the maximum angle of 

triangles matters the most for interpolation accuracy whereas 
the minimum angles do not have a direct effect. Obviously, 
algorithms applying a lower bound on minimum angle are also 
effective in reducing interpolation errors because bounding 
minimum angle results in an upper bound on maximum angle. 
This fact is responsible for considering Delaunay triangulations 
for two dimensions as Delaunay triangulations maximize the 
minimum angle [11] among all possible triangulations for a 
given set of vertices. Recently, Song et al. [32] borrowed the K-
means clustering algorithm from machine learning to devise a 
routine that optimizes the minimum angle in a Delaunay 
triangulation used for CFD studies of oceans.  

Fan and Ollivier-Gooch [33] compared FVM discretization 
and truncation errors for solving the Poisson equation when 
triangulations were produced by Ruppert’s Delaunay 
triangulation [34], Marcum’s advancing front local 
reconnection [35] and Engwirda’s Frontal-Delaunay algorithms 
[36]. The triangulation algorithms in [35] and [36] produce a 
more regular mesh (a mesh with more equilateral triangles) 
compared to the one in [34]. Here, we extend the work of Fan 
and Ollivier-Gooch [33] by including the convection term to the 
governing conservation equation. Note that they [33] stated that 
using a more regular triangulation did not improve the 
discretization error of the solution; thus, our focus in this work 
remains on algorithms that create a Delaunay triangulation 
without any compromise to mesh regularity, even the Delaunay 
advancing front [5] that is employed here uses the advancing 
front technique for only node placement; however, the final 
triangulation is created by a full Delaunay triangulation 
algorithm as discussed in Section II C. 

Gao et al. [37] used statistical correlation analysis to assess 
the correlation among different hexahedral mesh quality 
measures including the angle extremums as well as correlation 
between mesh quality measures and FEM discretization error 
for solving Poisson equation and partial differential equations 
of linear elasticity and Stokes problem. In this work we perform 
a similar correlation analysis of the relation between 
triangulation angle extremums and FVM discretization error for 
the conduction-convection problem.  

The remainder of this paper is organized as follows. In 
Section II, the methodologies used to generate the 
triangulations are reviewed. In Section III, the test conduction-
convection problem is described. Note that describing the FVM 
formulation and implementation will not be attempted here as 
the methodology in [26] is closely followed here. Section IV 
investigates effect of different triangulations on FVM 
discretization error. The conclusions are presented in Section 
V. Note that hereinafter by error we mean the discretization 
error which is the absolute difference between the numerical 
solution and the exact solution.  

II. TRIANGULATION METHODOLOGIES 

As mentioned earlier, in this work the emphasis is on 
comparing the node insertion (Steiner nodes) algorithms. For 
all the algorithms considered here, lifting to the third-dimension 
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algorithm [38] is used to construct a Delaunay triangulation of 
given planar points. For a comparative study of different 
algorithms for constructing a Delaunay triangulation of planar 
points, see [39]. Moreover, in assessing the efficiency of the 
generated meshes by the three above methods, our attention is 
on the error of the numerical results compared to the theoretical 
ones. Direct method (Gaussian elimination) is employed to 
solve the resulting algebraic equations from discretization of 
governing equations. See [40] for the effect of different 
triangulation algorithms on convergence of indirect (iterative) 
methods of solving the final algebraic equations for FEM and 
FVM.  

A. Weatherill & Hassan Algorithm 

The first method to consider is the method of splitting 
existing triangles to insert nodes and produce a finer 
triangulation. A version of this approach is prescribed by 
Weatherill and Hassan [2], designated by WH here, as follows: 
One starts with a Delaunay triangulation of only boundary 
points. For each boundary point, a length scale is defined equal 
to the average length of all adjacent edges to that point. Then a 
new point is inserted at the centroid of one of triangles. The 
length scale of the new point is calculated as interpolation of 
length scales of only boundary points. If the new point’s 
distance to all existing points (boundary and inserted ones) is 
larger than the calculated length scale for that point multiplied 
by a factor, the new point is accepted, the Delaunay 
triangulation is updated to include the new point and the 
procedure continues until no new point can be accepted. 
Regarding the multiplication factor for length scales, Weatherill 
and Hassan suggest using one factor, α, for checking the 
distance of a new point to boundary points and a different one, 
β, for previously inserted points. The authors have used (α, β) = 
(1, 10) and (α, β) = (1, 0.1) in their illustrations. In this work the 
values (α, β) = (1, 0.1) are employed. Figs. 1 (a) and (d) show 
two triangulation samples using this approach. 

B. Shewchuk’s TRIANGLE Algorithm  

Here, the TRIANGLE algorithm by Shewchuk [3] is used 
and designated by TR for convenience. This algorithm involves 
triangle splitting like WH as well as edge splitting. First, certain 
definitions for this approach are reviewed: A segment is an edge 
that is an input edge. Diametral circle is a circle centered at the 
mid point of a segment with diameter equal to segment length. 
A vertex is said to be visible to a segment if it is adjacent to an 
adjacent face of the segment. An encroached segment is a 
segment that a visible, but not adjacent, vertex lies on or inside 
its diametral circle. Segment splitting to subsegments is 
splitting a segment by inserting a new vertex at the segment 
center. The new subsegments are also considered a segment. A 
skinny triangle is a triangle that the ratio of its circumcenter to 
its minimum side length is larger than a predetermined constant 
denoted by B which is normally set to √2. Triangle Splitting is 
inserting a vertex at the circumcenter of a triangle.  

The vertex insertion cycle consists of: 1) generating a 
Delaunay triangulation of all input points, 2) splitting all 
encroached segments and 3) finding a skinny triangle and insert 

a vertex at its circumcenter if the new vertex is not encroaching 
any existing segments. If the new vertex is rejected, the 
segments that it encroaches are split. Steps 2 and 3 are repeated 
until no skinny triangle or encroached segment remain. 

An earlier and alternative version of triangle and edge 
splitting technique was presented by Ruppert [34] and Chew 
[41], [42]. These approaches are then combined and modified 
by Shewchuk [3]. For brevity, the TRIANGLE algorithm is 
labeled TR from this point on. Figs. 1 (b) and (e) show 
triangulations of a square and an annular circular region 
employing TR method.  

C. Delaunay Advancing Front Algorithm 

Another approach for inserting new points is the advancing 
front (AF) technique [4], [5]. In AF approach, a front is a 
polygon separating the meshed and not-yet-meshed regions. 
Initially, the boundary of the domain to be triangulated is the 
same as front. At each step of AF an edge of the front is selected 
for a new triangle insertion by adding a new point to non-
meshed regions or using existing vertices of the front. The 
processed edge is removed from the front and two sides of the 
new triangle are added to the front. In this way the front is 
changed at each step and the iteration continues until the front 
is a triangle. There are several variations of this method [5]; 
however, in this work we only consider Delaunay-AF method 
(see section 3.7.3 of [5]) with a slight modification: For each 
point that is a candidate for node insertion, instead of creating a 
Delaunay triangulation of existing points, as prescribed in [5], 
the distance of the candidate point to all other existing points is 
checked, if the new point is closer than pre-selected value to 
any existing point, it is rejected and the closest node in the front 
to the rejected point location is chosen to build a new triangle 
on the front. After the front is reduced to a triangle, the 
triangulation is discarded, and a Delaunay triangulation is built 
on the original and inserted nodes. Figs. 1 (c) and (f) show two 
triangulations by AF method.  

 

 

Fig. 1 Visual representation of three triangulation algorithms: (a) 
Triangulating a square using WH, (b) TR and (c) AF algorithms, 

triangulation of a quarter of the annular region between two 
concentric circles using (d) WH, (e) TR and (f) AF algorithms 

 
Mavriplis [43] and Pirzdeh [44] devised an alternative AF 

scheme called advancing layer (AL) that is more suitable for 
boundary layer flows particularly when the flow is turbulent. In 
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such flows, a thin layer of flow adjacent to the boundary, the 
viscous sublayer, experiences much sharper changes in 
velocity, compared to the rest flow farther from the boundary. 
The advancing layer algorithms create highly refined mesh 
regions possessing large aspect ratio cells near the boundary 
and then use the normal AF methodology for the rest of the flow 
domain. See [45] for the recent advances in AL method.  

III. PROBLEM DESCRIPTION  

The equation that is considered in this work and solved by 
the FVM, is the steady-state conduction-convection 
conservation equation without a source term for a variable φ 
described as the following, in the non-dimensional form, 
 

𝒖 ∙ ∇𝜑 ∇ ∙ 𝑃𝑒 ∇𝜑 ,          (1) 
 
where u is the non-dimensional velocity of the fluid and is 
assumed to be known and ∇ is the non-dimensional gradient 
operator. Pe is the Péclet number, a non-dimensional group that 
describes the ratio of convection terms over the conduction 
terms and is normally expressed as: 

 
𝑃𝑒  𝐿𝑈 𝜅⁄ ,          (2) 

 
where L is a dimensional length scale, U is a dimensional 
velocity scale and κ is a kinematic diffusivity, with the 
dimension of length squared over time. It is assumed that the 
fluid is incompressible so that the velocity field obeys the 
continuity equation, 
 

∇ ∙ 𝒖 0.          (3) 
 

Equation (1) is significant for all transport phenomena 
involving mass transfer, fluid flow (momentum transfer) and 
heat transfer [46]. The variable φ could represent a species 
concentration, for which the left-hand side of (1) describes the 
convection of the species by flow and the right side is the Fick’s 
law with 𝑃𝑒  being the non-dimensional mass diffusivity. As 
yet another example, (1), by adding a pressure gradient and a 
transient velocity term, and exchanging the Pe number with the 
Reynolds number, becomes the Navier-Stokes equation that 
governs fluid flow of Newtonian liquids. Further, (1) also 
describes steady-state heat transfer when the viscous dissipation 
is ignored. In that case, the left-hand side of (1) is termed heat 
convection and the right-hand side, heat conduction or 
diffusion. In this text, the word convection or advection is used 
to describe the left-hand side of (1) in general and diffusion or 
conduction label the right-hand side of (1).  

To assess the efficiency of different triangulation methods, 
the example 1, case 1 in [26] is used which is briefly described 
in the previous section. This problem was also used to do a 
comparative analysis among different finite difference methods 
by Runchal [47]. The configuration for this test problem is 
presented in Fig. 2. The geometry is of a solid hollow cylinder 
formed between two concentric cylinders of non-dimensional 

radiuses of √2 and 6 4√2. These values are selected in this 
way to make the lower left corner coordinates equal to (1,1) and 

the size of the square, that is the boundary of the computational 
domain, equal to √2.  

 

 

Fig. 2 The geometry of the problem considered in this work: The 

inner radius and outer radius are √2 and 6 4√2; the conduction-
convection Equation (1) is solved in the square labelled “FVM 

Domain” 

IV. COMPARISON OOF FVM ACCURACY USING DIFFERENT 

TRIANGULATIONS  

As described above, to assess the efficiency of different 
triangulation methods, the example 1, case 1 in [26] is used. 
Figs. 3 (a) and (b) illustrate, respectively, the average of error 
percentage and maximum error percent of solving the 
aforementioned problem by using FVM.  

In the averaging process, only internal nodes are considered 
as the error in boundary nodes vanishes since the problem is of 
Dirichlet type. As Fig. 3 shows, the error of all triangulation 
methods increases by increasing Pe, i.e., the error is higher as 
the convective term becomes more significant. At low Pe values 
where conduction is dominant, the FVM error using a 
structured triangulation error is less than those employing 
unstructured triangulations. However, as convection becomes 
more effective compared to conduction, the structured 
triangulation error grows more rapidly than unstructured ones. 
This trend can be explained by the fact that the resultant 
velocity distribution that derives the convection does not have 
a uniform direction in the domain and thus unstructured 
triangulations are more effective. Among the unstructured 
triangulations, it is observed that the advancing front method 
has the lowest average error. Looking at the maximum error 
percentage in Fig. 3, the AF and TR methods are 
indistinguishable at high Pe range.  
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Fig. 3 (a) Average and (b) maximum error (%) for solving problem 1 
case 1 (constant conductivity) in [26] for a square domain with 40 

boundary points with FVM employing different triangulation 
approaches 

 
One of the early triangulation measures proposed is the 

maximum triangle angle in a triangulation. Babuška and Aziz 
[31] proved that the maximum angle of triangles matters for 
interpolation accuracy whereas the minimum angles do not 
directly have any effect. Obviously, algorithms applying a 
lower bound on minimum angle are also effective in reducing 
interpolation errors because bounding minimum angle will 
result an upper bound on maximum angle. This fact is 
responsible for considering Delaunay triangulations for two 
dimensions as Delaunay triangulations maximize the minimum 
angle [11] among all possible triangulations for a given set of 
vertices. We wish to investigate how maximum or minimum 
angle of a triangulation is related to the numerical error for the 

problem considered here.  To provide an answer, first, a set of 
triangulation samples with the same number of nodes are built 
and then the correlation between minimum and maximum 
angles with the FVM error is examined. Each triangulation 
sample is built by perturbing the position of internal points of 
the Steiner nodes obtained from the TR method on a square 
domain of size √2 √2 with 40 boundary points, and then the 
new set of points are Delaunay triangulated. Here, a batch of 
100 triangulations are built and the FVM problem is solved 
using these triangulations. For reader’s visual inspection, six of 
the triangulation samples are depicted in Fig. 4. Next, the 
correlation of FVM error with maximum of minimum or 
minimum of maximum triangle angles will be examined using 
the correlation function. Recall that the correlation, or 
normalized covariance function is defined as [48]: 

 

𝜎 𝑒, 𝑞 , 〈 〈 〉 〈 〉 〉

〈 〈 〉 〉〈 〈 〉 〉
,     (4) 

 
where e represents the error percentage (average or maximum) 
of the FVM compared to the exact solution, q is a triangulation 
measure, 〈 〉 denotes average, σ(e) and σ(q) are the standard 
deviations for maximum error percentage and a quality measure 
in the sample of triangulations and cov(e,q) is the covariance 
between e and q in that sample. σ(e,q) is in the range [-1, 1]. 
Values of σ(e,q) equal or close to +1 (or -1) demonstrate 
favorable (adverse) correlation between e and q. On the other 
hand, values close to zero show absence of any correlation 
between e and q [48]. Fig. 5 presents the correlation between 
FVM error percentage with minimum or maximum in the 
triangulations. The problem that is solved by FVM is the 
example 1, case 1 (constant diffusivity) in [26]. As Fig. 5 
shows, the correlations between FVM error and maximum or 
minimum angles are weak.  

 

 

 

Fig. 4 Six samples of 100 triangulations that are generated by 
perturbing non-boundary points of a basic triangulation and then 

reapplying Delaunay triangulation on moved points 
 

Further, to examine the effect of minimum or maximum 
angles on non-Delaunay triangulation, the same FVM problem 
is also solved using 100 non-Delaunay triangulations. The non-
Delaunay triangulations are created by flipping ten randomly 
selected edges in the triangulation of a square domain of size 
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√2 √2 with 40 boundary points distributed and triangulated 
using TR [3] approach which is depicted in Fig. 1 (b). Six 
samples of this set are shown in Fig. 6, and the correlation 
between FVM errors using these triangulations and minimum 
and maximum angles are presented in Fig. 7. This figure, 
similar to Fig. 5, shows low values of absolute correlation 
between FVM error and maximum or minimum angle.  

 

 

Fig. 5 The correlation between FVM error with minimum or 
maximum triangle angles, using a batch of 100 Delaunay 

triangulations, 6 samples of which are shown in Fig. 4 
 

 

 

Fig. 6 Six samples of 100 non-Delaunay triangulations that are 
generated by flipping 10 randomly selected edges of a basic 

triangulation 
 

To interpret trends in Figs. 5 and 7, we recall that the square 
of correlation between two variables is the same as R2 statistics 
for a least square linear regression of those variables [49]. 
Hence, low values of absolute correlation in Figs. 5 and 7 
suggest absence of an exclusive linear relation between FVM 
error and minimum or maximum angles. However, one cannot 
rule out a nonlinear relation among these variables or a linear 
relation that also involves more variables. 

 

 

Fig. 7 The correlation between FVM error with minimum or 
maximum triangle angles, using a batch of 100 non-Delaunay 

triangulations, 6 samples of which are shown in Fig. 6 

V. CONCLUSION 

Triangulations resulting from three different Delaunay 
refinement algorithms and one structured triangulation were 
used to solve a conduction-convection problem by the vertex-
based FVM scheme of Baliga and Patankar [26]. It is observed 
that for the regular domain boundary, a square, that is the case 
here, the discretization error of structured triangulation is lower 
for low Pe values, where conduction is dominant. However, for 
high Pe numbers, when convection is dominant, the 
unstructured triangulations compiled by triangle and edge 
splitting algorithm of Shewchuk [3] and advancing front of Lo 
[4], [5] correspond to lower discretization errors compared to 
the structured triangulation. Moreover, no direct statistical 
correlation is found between discretization error and maximum 
or the minimum angle in the triangulation for both Delaunay 
and non-Delaunay triangulations.  
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