Numerical Simulation of Convection Heat Transfer in a Lid-Driven Cavity with an Open Side
Authors: M.Jafari, M.Farhadi, K.sedighi, E.Fattahi
Abstract:
In this manuscript, the LBM is applied for simulating of Mixed Convection in a Lid-Driven cavity with an open side. The cavity horizontal walls are insulated while the west Lid-driven wall is maintained at a uniform temperature higher than the ambient. Prandtl number (Pr) is fixed to 0.71 (air) while Reynolds number (Re) , Richardson number (Ri) and aspect ratio (A) of the cavity are changed in the range of 50-150 , of 0.1-10 and of 1-4 , respectively. The numerical code is validated for the standard square cavity, and then the results of an open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number (Nu) on lid- driven wall decreases and with same Reynolds number (Re) by increasing of aspect ratio (A), Richardson number plays more important role in heat transfer rate.
Keywords: Lattice Boltzmann Method, Open ended cavity, Mixed convection, Lid-driven cavity.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078138
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648References:
[1] Y.H. Qian, D. d-Humieres, P. Lallemand, Lattice BGK models for NaviereStokes equation, Europhys. Lett. 17 (6) (1992) 479-484.
[2] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329-364.
[3] D. Yu, R. Mei, L.S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progr. Aerospace Sci. 39 (2003) 329-367.
[4] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, London, 2001.
[5] E. Fattahi, M. Farhadi, K. Sedighi , Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus, International Journal of Thermal Sciences, 49 (2010) 2353-2362.
[6] M.A. Delavar, M. Farhadi, K. Sedighi, Numerical simulation of direct methanol fuel cells using lattice Boltzmann method, international journal of hydrogen energy, 35 (2010) 9306-9317.
[7] He X, Luo LS, A priori derivation of the lattice Boltzmann equation. Phys Rev E, 55(1997),R6333.
[8] U. Ghia, K.N. Ghia, C.T. Shin, High-resolutions for incompressible flow using Navier-Stokes equations and a multigrid method, Comput. Phys, 48 (1982) 387-411.
[9] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R. Darzi, Lattice Boltzmann simulation of nanofluid in lid-driven cavity, International Communications in Heat and Mass Transfer, 37 (2010) 1528-1534.
[10] Y.L. Chan, C.L. Tien, Laminar natural convection in shallow open cavities, J. Heat Transfer 108 (1986) 305-309.
[11] E. Bilgen, Passive solar massive wall systems with fins attached on the heated wall and without glazing, J. Sol. Energ. Eng. 122 (2000) 30-34.
[12] S.S. Cha, K.J. Choi, An interferometric investigation of open cavity natural convection heat transfer, Exp. Heat Transfer 2 (1989) 27-40.
[13] A. Javam, S.W. Armfield, Stability and transition of stratified natural convection flow in open cavities, J. Fluid Mech. 44 (2001) 285-303.
[14] A.A. Mohamad, Natural convection in open cavities and slots, International journal of Heat Transfer 27 (1995) 705-716.
[15] A.A. Mohamad, M. El-Ganaoui, R. Bennacer, Lattice Boltzmann simulation of natural convection in an open ended cavity, International Journal of Thermal Sciences 48 (2009) 1870-1875
[16] M.K. Moallemi, K.S. Jang, Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity, Int. J. Heat Mass Transfer 35 (1992) 1881-1892.