Search results for: cabin pressure
1275 Motion Protection System Design for a Parallel Motion Platform
Authors: Dongsu Wu, Hongbin Gu
Abstract:
A motion protection system is designed for a parallel motion platform with subsided cabin. Due to its complex structure, parallel mechanism is easy to encounter interference problems including link length limits, joints limits and self-collision. Thus a virtual spring algorithm in operational space is developed for the motion protection system to avoid potential damages caused by interference. Simulation results show that the proposed motion protection system can effectively eliminate interference problems and ensure safety of the whole motion platform.Keywords: Motion protection, motion platform, parallelmechanism, Stewart platform, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751274 Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation
Authors: M. F. Sung, Y.D. Kuan, R.J. Shyu, S.M. Lee
Abstract:
Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).
Keywords: Air-pumping, computational fluid dynamics, sound pressure level, tire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23791273 Numerical Analysis on the Performance of Heatsink with Microchannels
Authors: Jer-Huan Jang, Han-Chieh Chiu, Wei-Chung Yeih, Jia-Jui Yang, Chien-Sheng Huang
Abstract:
In this paper, numerical simulation is used to investigate the thermal performance of liquid cooling heatsink with microchannels due to geometric arrangement. Commercial software ICEPAK is utilized for the analysis. The considered parameters include aspect ratio, porosity and the length and height of microchannel. The aspect ratio varies from 3 to 16 and the length of microchannel is 10mm, 14mm, and 18mm. The height of microchannel is 2mm, 3mm and 4mm. It is found short channel have better thermal efficiency than long channel at 490Pa. No matter the length of channel the best aspect ratio is 4. It is also noted that pressure difference at 2940Pa the best aspect ratio from 4 to 8, it means pressure difference affect aspect ratio, effective thermal resistance at low pressure difference but lower effective thermal resistance at high pressure difference.Keywords: thermal resistance, liquid cooling, microchannels, numerical analysis, pressure difference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21621272 Single Zone Model for HCCI Engine Fueled with n-Heptane
Authors: Thanapiyawanit Bancha, Lu Jau-Huai
Abstract:
In this study, we developed a model to predict the temperature and the pressure variation in an internal combustion engine operated in HCCI (Homogeneous charge compression ignition) mode. HCCI operation begins from aspirating of homogeneous charge mixture through intake valve like SI (Spark ignition) engine and the premixed charge is compressed until temperature and pressure of mixture reach autoignition point like diesel engine. Combustion phase was described by double-Wiebe function. The single zone model coupled with an double-Wiebe function were performed to simulated pressure and temperature between the period of IVC (Inlet valve close) and EVO (Exhaust valve open). Mixture gas properties were implemented using STANJAN and transfer the results to main model. The model has considered the engine geometry and enables varying in fuelling, equivalence ratio, manifold temperature and pressure. The results were compared with the experiment and showed good correlation with respect to combustion phasing, pressure rise, peak pressure and temperature. This model could be adapted and use to control start of combustion for HCCI engine.Keywords: Double-Wiebe function, HCCI, Ignition enhancer, Single zone model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28041271 Solubility of CO2 in Aqueous Solutions of 2- Amino-2-Methyl-1-Propanol at High Pressure
Authors: Azmi Mohd Shariff, Ghulam Murshid, K.K. Lau, Mohammad Azmi Bustam, Faizan Ahamd
Abstract:
Carbon dioxide is one of the major green house gases. It is removed from different streams using amine absorption process. Sterically hindered amines are suggested as good CO2 absorbers. Solubility of carbon dioxide (CO2) was measured in aqueous solutions of 2-Amino-2-methyl-1-propanol (AMP) at temperatures 30 oC, 40 oC and 60 oC. The effect of pressure and temperature was studied over various concentrations of AMP. It has been found that pressure has positive effect on CO2 solubility where as solubility decreased with increasing temperature. Absorption performance of AMP increased with increasing pressure. Solubility of aqueous AMP was compared with mo-ethanolamine (MEA) and the absorption capacity of aqueous solutions of AMP was found to be better.Keywords: Global warming, Carbon dioxide, Amine, Solubility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25921270 Polishing Machine Based on High-Pressure Water Jet
Authors: Mohammad A. Khasawneh
Abstract:
The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541269 Development of a Novel Low-Cost Flight Simulator for Pilot Training
Authors: Hongbin Gu, Dongsu Wu, Hui Liu
Abstract:
A novel low-cost flight simulator with the development goals cost effectiveness and high performance has been realized for meeting the huge pilot training needs of airlines. The simulator consists of an aircraft dynamics model, a sophisticated designed low-profile electrical driven motion system with a subsided cabin, a mixed reality based semi-virtual cockpit system, a control loading system and some other subsystems. It shows its advantages over traditional flight simulator by its features achieved with open architecture, software solutions and low-cost hardware.Keywords: Flight simulator, mixed reality, motion system, control loading system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29431268 Study on Discontinuity Properties of Phased-Array Ultrasound Transducer Affecting to Sound Pressure Fields Pattern
Authors: Tran Trong Thang, Nguyen Phan Kien, Trinh Quang Duc
Abstract:
The phased-array ultrasound transducer types are utilities for medical ultrasonography as well as optical imaging. However, their discontinuity characteristic limits the applications due to the artifacts contaminated into the reconstructed images. Because of the effects of the ultrasound pressure field pattern to the echo ultrasonic waves as well as the optical modulated signal, the side lobes of the focused ultrasound beam induced by discontinuity of the phased-array ultrasound transducer might the reason of the artifacts. In this paper, a simple method in approach of numerical simulation was used to investigate the limitation of discontinuity of the elements in phased-array ultrasound transducer and their effects to the ultrasound pressure field. Take into account the change of ultrasound pressure field patterns in the conditions of variation of the pitches between elements of the phased-array ultrasound transducer, the appropriated parameters for phased-array ultrasound transducer design were asserted quantitatively.
Keywords: Phased-array ultrasound transducer, sound pressure pattern, discontinuous sound field, numerical visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25971267 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller
Authors: Y. B. Galerkin, E. Y. Popova, K. V. Soldatova
Abstract:
There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio 3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.
Keywords: Supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26581266 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.
Keywords: Computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7751265 Computational Study on Cardiac-Coronary Interaction in Terms of Coronary Flow-Pressure Waveforms in Presence of Drugs: Comparison Between Simulated and In Vivo Data
Authors: C. De Lazzari, E. Del Prete, I. Genuini, F. Fedele
Abstract:
Cardiovascular human simulator can be a useful tool in understanding complex physiopathological process in cardiocirculatory system. It can also be a useful tool in order to investigate the effects of different drugs on hemodynamic parameters. The aim of this work is to test the potentiality of our cardiovascular numerical simulator CARDIOSIM© in reproducing flow/pressure coronary waveforms in presence of two different drugs: Amlodipine (AMLO) and Adenosine (ADO). In particular a time-varying intramyocardial compression, assumed to be proportional to the left ventricular pressure, was related to the venous coronary compliances in order to study its effects on the coronary blood flow and the flow/pressure loop. Considering that coronary circulation dynamics is strongly interrelated with the mechanics of the left ventricular contraction, relaxation, and filling, the numerical model allowed to analyze the effects induced by the left ventricular pressure on the coronary flow.Keywords: Cardiovascular system, Coronary blood flow, Hemodynamic, Numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361264 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production
Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia
Abstract:
Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.
Keywords: Direct steam generation, parabolic trough collectors, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7911263 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution
Authors: Karanja Kibicho, Anthony Sayers
Abstract:
Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19121262 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem
Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn
Abstract:
At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent-set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.
Keywords: CPTu, pore water pressure, pile rebound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26721261 CFD Prediction of the Round Elbow Fitting Loss Coefficient
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Pressure loss in ductworks is an important factor to be considered in design of engineering systems such as power-plants, refineries, HVAC systems to reduce energy costs. Ductwork can be composed by straight ducts and different types of fittings (elbows, transitions, converging and diverging tees and wyes). Duct fittings are significant sources of pressure loss in fluid distribution systems. Fitting losses can be even more significant than equipment components such as coils, filters, and dampers. At the present work, a conventional 90o round elbow under turbulent incompressible airflow is studied. Mass, momentum, and k-e turbulence model equations are solved employing the finite volume method. The SIMPLE algorithm is used for the pressure-velocity coupling. In order to validate the numerical tool, the elbow pressure loss coefficient is determined using the same conditions to compare with ASHRAE database. Furthermore, the effect of Reynolds number variation on the elbow pressure loss coefficient is investigated. These results can be useful to perform better preliminary design of air distribution ductworks in air conditioning systems.
Keywords: Duct fitting, Pressure loss, Elbow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48521260 A New Empirical Expression of the Breakdown Voltage for Combined Variations of Temperature and Pressure
Authors: Elyse Sili, Jean Pascal Cambronne
Abstract:
In aircraft applications, according to the nature of electrical equipment its location may be in unpressurized area or very close to the engine; thus, the environmental conditions may change from atmospheric pressure to less than 100 mbar, and the temperature may be higher than the ambient one as in most real working conditions of electrical equipment. Then, the classical Paschen curve has to be replotted since these parameters may affect the discharge ignition voltage. In this paper, we firstly investigate the domain of validity of two corrective expressions on the Paschen-s law found in the literature, in case of changing the air environment and known as Peek and Dunbar corrections. Results show that these corrections are no longer valid for combined variation of temperature and pressure. After that, a new empirical expression for breakdown voltage is proposed and is validated in the case of combined variations of temperature and pressure.Keywords: Gas breakdown, gas density, Paschen curve, temperature effects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48991259 A Computational Study into the Effect of Design Parameters on Ignition Timing and Emission Characteristics of HCCI Engine in Internal Combustion Engines Fuelled with Isooctane
Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed
Abstract:
In order to understand the auto-ignition process in a HCCI engine better, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the inlet pressure, and the compression ratio were varied and their influence on the ignition delays and emission characteristics were studied. The inlet temperature was changed from 400 K to 460 K (in step of 15 K), the inlet pressure from 0.9 to 3 atm, while the compression ratio varied from 15 to 23. The fuel that was investigated is isooctane. The inlet temperature, the inlet pressure, and the compression ratio appeared to decrease the ignition delays, with the inlet pressure having the least influence and the compression ratio the most. The effect of these parameters on emissions’ characteristics were also investigated. Results indicate that increasing the compression ratio results in increasing the concentration of all the species.
Keywords: Compression Ratio, intake temperature, intake pressure, HCCI engine, isooctane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101258 Piezoelectric Power Output Predictions Using Single-Phase Flow to Power Flow Meters
Authors: Umar Alhaji Mukhtar, Abubakar Mohammed El-jummah
Abstract:
This research involved the utilization of fluid flow energy to predict power output using Lead Zirconate Titanate (PZT) piezoelectric stacks. The aim of this work is to extract energy from a controlled level of pressure fluctuation in single-phase flow which forms a part of the energy harvesting technology that powers flow meters. A device- Perspex box was developed and fixed to 50.8 mm rig to induce pressure fluctuation in the flow. An experimental test was carried out using the single-phase water flow in the developed rig in order to measure the power output generation from the piezoelectric stacks. 16 sets of experimental tests were conducted to ensure the maximum output result. The acquired signal of the pressure fluctuation was used to simulate the expected electrical output from the piezoelectric material. The results showed a maximum output voltage of 12 V with an instantaneous output power of 1 µW generated, when the pressure amplitude is 2.6 kPa at a frequency of 2.4 Hz.
Keywords: Energy harvesting, experimental test, perspex rig, pressure fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7021257 Why We Are Taller in the Morning than Going to Bed at Night – An in vivo and in vitro Study
Authors: Harcharan Singh Ranu
Abstract:
Intradiscal and intervertebral pressure transducers were developed. They were used to map the pressures in the nucleus and within the annulus of the human spinal segments. Their stressrelaxation were recorded over a period of time for nucleus pressure, applied load, and peripherial strain against time. The results show that for normal discs, pressures in the nucleus are viscoelastic in nature with the applied compressive load. Mechanical strains which develop around the periphery of the vertebral body are also viscoelastic with the applied compressive load. Applied compressive load against time also shows viscoelastic behavior. However, annulus does not respond viscoelastically with the applied load. It showed a linear response to compressive loading.Keywords: Intradiscal pressure transducer (IDPT), intervertebral pressure transducer (IVPT), mechanical strains of vertebral bone, viscoelasticity of human spinal disc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32751256 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels
Authors: S. Ansari Sadrabadi, G. H. Rahimi
Abstract:
In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.
Keywords: FGM, Cylindrical pressure tubes, Small deformation theory, Yield onset, Thermal loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19461255 Production of WGHs and AFPHs using Protease Combinations at High and Ambient Pressure
Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chul-Jin Kim, Chong-Tai Kim
Abstract:
Wheat gluten hydrolyzates (WGHs) and anchovy fine powder hydrolyzates (AFPHs) were produced at 300 MPa using combinations of Flavourzyme 500MG (F), Alcalase 2.4L (A), Marugoto E (M) and Protamex (P), and then were compared to those produced at ambient pressure concerning the contents of soluble solid (SS), soluble nitrogen and electrophoretic profiles. The contents of SS in the WGHs and AFPHs increased up to 87.2% according to the increase in enzyme number both at high and ambient pressure. Based on SS content, the optimum enzyme combinations for one-, two-, three- and four-enzyme hydrolysis were determined as F, FA, FAM and FAMP, respectively. Similar trends were found for the contents of total soluble nitrogen (TSN) and TCA-soluble nitrogen (TCASN). The contents of SS, TSN and TCASN in the hydrolyzates together with electrophoretic mobility maps indicates that the high-pressure treatment of this study accelerated protein hydrolysis compared to ambient-pressure treatment.Keywords: Production, Wheat gluten hydrolyzates, Anchovy fine powder hydrolyzates, Protease combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291254 Investigation of Recirculation Effects on the Formation of Vapor Bubbles in Centrifugal Pump Blades
Authors: Mohammad Taghi Shervani Tabar, Seyyed Hojjat Majidi, Zahra Poursharifi
Abstract:
Cavitation in pumps is known as the formation of vapor bubbles due to pressure drop and collapsing these bubbles. In some conditions, it has been observed that the formation of bubbles occurs at the pressure side of centrifugal pump blades. In this study, the formation of bubbles at the pressure side of blades has been investigated. Water is used in this study as the fluid and performance curves were depicted for different flow rates in an approximately constant speed. The results show that when a centrifugal pump works in low flow rates, a secondary flow namely recirculation starts to begin. In this condition, separation of flow increases which causes vortex formation and local pressure drop and eventually the formation of vapor bubbles starts.Keywords: Cavitation, Centrifugal pump, Recirculation, Vapor bubble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40751253 Fractal Analysis on Human Colonic Pressure Activities based on the Box-counting Method
Authors: Rongguo Yan, Guozheng Yan, Banghua Yang
Abstract:
The colonic tissue is a complicated dynamic system and the colonic activities it generates are composed of irregular segmental waves, which are referred to as erratic fluctuations or spikes. They are also highly irregular with subunit fractal structure. The traditional time-frequency domain statistics like the averaged amplitude, the motility index and the power spectrum, etc. are insufficient to describe such fluctuations. Thus the fractal box-counting dimension is proposed and the fractal scaling behaviors of the human colonic pressure activities under the physiological conditions are studied. It is shown that the dimension of the resting activity is smaller than that of the normal one, whereas the clipped version, which corresponds to the activity of the constipation patient, shows with higher fractal dimension. It may indicate a practical application to assess the colonic motility, which is often indicated by the colonic pressure activity.Keywords: Colonic pressure activity, erratic fluctuations, fractal dimension and spikes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101252 The Comparison of Form Drag and Profile Dragof a Wind Turbine Blade Section in Pitching Oscillation
Authors: M. R. Soltani, M. Seddighi, M. Mahmoudi
Abstract:
Extensive wind tunnel tests have been conducted to investigate the unsteady flow field over and behind a 2D model of a 660 kW wind turbine blade section in pitching motion. The surface pressure and wake dynamic pressure variation at a distance of 1.5 chord length from trailing edge were measured by pressure transducers during several oscillating cycles at 3 reduced frequencies and oscillating amplitudes. Moreover, form drag and linear momentum deficit are extracted and compared at various conditions. The results show that the wake velocity field and surface pressure of the model have similar behavior before and after the airfoil beyond the static stall angle of attack. In addition, the effects of reduced frequency and oscillation amplitudes are discussed.Keywords: Pitching motion, form drag, Profile drag, windturbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891251 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors
Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo
Abstract:
The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.
Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381250 The Significance of the Radiography Technique in the Non-Destructive Evaluation of the Integrity and Reliability of Cast Interconnects
Authors: Keshav Pujeri, Pranesh Jain, Krutibas Panda
Abstract:
Significant changes in oil and gas drilling have emphasized the need to verify the integrity and reliability of drill stem components. Defects are inevitable in cast components, regardless of application; but if these defects go undetected, any severe defect could cause down-hole failure. One such defect is shrinkage porosity. Castings with lower level shrinkage porosity (CB levels 1 and 2) have scattered pores and do not occupy large volumes; so pressure testing and helium leak testing (HLT) are sufficient for qualifying the castings. However, castings with shrinkage porosity of CB level 3 and higher, behave erratically under pressure testing and HLT making these techniques insufficient for evaluating the castings- integrity. This paper presents a case study to highlight how the radiography technique is much more effective than pressure testing and HLT.Keywords: Casting Defects, Interconnects, Leak Check, Pressure Test, Radiography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35151249 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading
Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir
Abstract:
Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.
Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22501248 Evaluation of a Dual-Fluid Cold-Gas Thruster Concept
Authors: J. D. Burges, M. J. Hall, E. G. Lightsey
Abstract:
A new dual-fluid concept was studied that could eventually find application for cold-gas propulsion for small space satellites or other constant flow applications. In basic form, the concept uses two different refrigerant working fluids, each having a different saturation vapor pressure. The higher vapor pressure refrigerant remains in the saturation phase and is used to pressurize the lower saturation vapor pressure fluid (the propellant) which remains in the compressed liquid phase. A demonstration thruster concept based on this principle was designed and built to study its operating characteristics. An automotive-type electronic fuel injector was used to meter and deliver the propellant. Ejected propellant mass and momentum were measured for several combinations of refrigerants and hydrocarbon fluids. The thruster has the advantage of delivering relatively large total impulse at low tank pressure within a small volume.
Keywords: cold-gas, nano-satellite, R134a, thruster
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42681247 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11601246 Resistance Training as a Powerful Tool in the Prevention and Treatment of Cardiovascular Diseases
Authors: I. Struhár, L. Dovrtělová, M. Kumstát
Abstract:
Regular exercise promotes reduction in blood pressure, reduction in body weight and it also helps to increase in insulin sensitivity. Participation in physical activity should always be linked to medical screening which can reveal serious medical problems. One of them is high blood pressure. Hypertension is risk factor for one billion people worldwide and the highest prevalence is found in Africa. Another component of hypertension is that people who suffer from hypertension have no symptoms. It is estimated that reduction of 3mm Hg in Systolic Blood Pressure decreases cardiac morbidity at least 5%. The most of the guidelines suggest aerobic exercise in a prevention of cardiovascular diseases. On the other hand, it is important to emphasize the impact of resistance training. Even, it was found higher effect for reduction on the level of systolic blood pressure than aerobic exercise.
Keywords: Coronary artery disease, physical activity, prevention, resistance training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971