Search results for: Sensors and actuators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 588

Search results for: Sensors and actuators

498 A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Bae-Ho Lee, Ji-Sung Lee

Abstract:

There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobileand active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
497 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. UAV techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. In this paper, a methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of RGB and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: Aerial thermography, data processing, drone, low-cost, point cloud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285
496 Worker Behavior Interpretation for Flexible Production

Authors: Bastian Hartmann, Christoph Schauer, Norbert Link

Abstract:

This paper addresses the problem of recognizing and interpreting the behavior of human workers in industrial environments for the purpose of integrating humans in software controlled manufacturing environments. In this work we propose a generic concept in order to derive solutions for task-related manual production applications. Thus, we are able to use a versatile concept providing flexible components and being less restricted to a specific problem or application. We instantiate our concept in a spot welding scenario in which the behavior of a human worker is interpreted when performing a welding task with a hand welding gun. We acquire signals from inertial sensors, video cameras and triggers and recognize atomic actions by using pose data from a marker based video tracking system and movement data from inertial sensors. Recognized atomic actions are analyzed on a higher evaluation level by a finite state machine.

Keywords: activity recognition, task modeling, marker-based video-tracking, inertial sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
495 Modular Hybrid Robots for Safe Human-Robot Interaction

Authors: J. Radojicic, D. Surdilovic, G. Schreck

Abstract:

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
494 Dual Mode Navigation for Two-Wheeled Robot

Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim

Abstract:

This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.

Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
493 Design and Fabrication of an Electrostatically Actuated Parallel-Plate Mirror by 3D-Printer

Authors: J. Mizuno, S. Takahashi

Abstract:

In this paper, design and fabrication of an actuated parallel-plate mirror based on a 3D-printer is described. The mirror and electrode layers are fabricated separately and assembled thereafter. The alignment is performed by dowel pin-hole pairs fabricated on the respective layers. The electrodes are formed on the surface of the electrode layer by Au ion sputtering using a suitable mask, which is also fabricated by a 3D-printer.For grounding the mirror layer, except the contact area with the electrode paths, all the surface is Au ion sputtered. 3D-printers are widely used for creating 3D models or mock-ups. The authors have recently proposed that these models can perform electromechanical functions such as actuators by suitably masking them followed by metallization process. Since the smallest possible fabrication size is in the order of sub-millimeters, these electromechanical devices are named by the authors as SMEMS (Sub-Milli Electro-Mechanical Systems) devices. The proposed mirror described in this paper which consists of parallel-plate electrostatic actuators is also one type of SMEMS devices. In addition, SMEMS is totally environment-clean compared to MEMS (Micro Electro-Mechanical Systems) fabrication processes because any hazardous chemicals or gases are utilized.

Keywords: MEMS, parallel-plate mirror, SMEMS, 3D-printer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
492 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
491 Context Aware Lightweight Energy Efficient Framework

Authors: D. Sathan, A. Meetoo, R. K. Subramaniam

Abstract:

Context awareness is a capability whereby mobile computing devices can sense their physical environment and adapt their behavior accordingly. The term context-awareness, in ubiquitous computing, was introduced by Schilit in 1994 and has become one of the most exciting concepts in early 21st-century computing, fueled by recent developments in pervasive computing (i.e. mobile and ubiquitous computing). These include computing devices worn by users, embedded devices, smart appliances, sensors surrounding users and a variety of wireless networking technologies. Context-aware applications use context information to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. For example: A context aware mobile phone will know that the user is currently in a meeting room, and reject any unimportant calls. One of the major challenges in providing users with context-aware services lies in continuously monitoring their contexts based on numerous sensors connected to the context aware system through wireless communication. A number of context aware frameworks based on sensors have been proposed, but many of them have neglected the fact that monitoring with sensors imposes heavy workloads on ubiquitous devices with limited computing power and battery. In this paper, we present CALEEF, a lightweight and energy efficient context aware framework for resource limited ubiquitous devices.

Keywords: Context-Aware, Energy-Efficient, Lightweight, Ubiquitous Devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
490 A Calibration Device for Force-Torque Sensors

Authors: Nicolay Zarutskiy, Roman Bulkin

Abstract:

The paper deals with the existing methods of force-torque sensor calibration with a number of components from one to six, analyzed their advantages and disadvantages, the necessity of introduction of a calibration method. Calibration method and its constructive realization are also described here. A calibration method allows performing automated force-torque sensor calibration both with selected components of the main vector of forces and moments and with complex loading. Thus, two main advantages of the proposed calibration method are achieved: the automation of the calibration process and universality.

Keywords: Automation, calibration, calibration device, calibration method, force-torque sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
489 Pipelines Monitoring System Using Bio-mimetic Robots

Authors: Seung You Na, Daejung Shin, Jin Young Kim, Seong-Joon Baek, Bae-Ho Lee

Abstract:

Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.

Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobile and active monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
488 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
487 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Keywords: Ampere’s force law, dynamical response, fatigue and fracture characterization, paired wire actuators and sensors, MEMS/NEMS devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
486 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3412
485 The CEO Mission II, Rescue Robot with Multi-Joint Mechanical Arm

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper presents design features of a rescue robot, named CEO Mission II. Its body is designed to be the track wheel type with double front flippers for climbing over the collapse and the rough terrain. With 125 cm. long, 5-joint mechanical arm installed on the robot body, it is deployed not only for surveillance from the top view but also easier and faster access to the victims to get their vital signs. Two cameras and sensors for searching vital signs are set up at the tip of the multi-joint mechanical arm. The third camera is at the back of the robot for driving control. Hardware and software of the system, which controls and monitors the rescue robot, are explained. The control system is used for controlling the robot locomotion, the 5-joint mechanical arm, and for turning on/off devices. The monitoring system gathers all information from 7 distance sensors, IR temperature sensors, 3 CCD cameras, voice sensor, robot wheels encoders, yawn/pitch/roll angle sensors, laser range finder and 8 spare A/D inputs. All sensors and controlling data are communicated with a remote control station via IEEE 802.11b Wi-Fi. The audio and video data are compressed and sent via another IEEE 802.11g Wi-Fi transmitter for getting real-time response. At remote control station site, the robot locomotion and the mechanical arm are controlled by joystick. Moreover, the user-friendly GUI control program is developed based on the clicking and dragging method to easily control the movement of the arm. Robot traveling map is plotted from computing the information of wheel encoders and the yawn/pitch data. 2D Obstacle map is plotted from data of the laser range finder. The concept and design of this robot can be adapted to suit many other applications. As the Best Technique awardee from Thailand Rescue Robot Championship 2006, all testing results are satisfied.

Keywords: Controlling, monitoring, rescue robot, mechanicalarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
484 Comparison of Power Consumption of WiFi Inbuilt Internet of Things Device with Bluetooth Low Energy

Authors: Darshana Thomas, Edward Wilkie, James Irvine

Abstract:

The Internet of things (IoT) is currently a highly researched topic, especially within the context of the smart home. These are small sensors that are capable of gathering data and transmitting it to a server. The majority of smart home products use protocols such as ZigBee or Bluetooth Low Energy (BLE). As these small sensors are increasing in number, the need to implement these with much more capable and ubiquitous transmission technology is necessary. The high power consumption is the reason that holds these small sensors back from using other protocols such as the most ubiquitous form of communication, WiFi. Comparing the power consumption of existing transmission technologies to one with WiFi inbuilt, would provide a better understanding for choosing between these technologies. We have developed a small IoT device with WiFi capability and proven that it is much more efficient than the first protocol, 433 MHz. We extend our work in this paper and compare WiFi power consumption with the other most widely used protocol BLE. The experimental results in this paper would conclude whether the developed prototype is capable in terms of power consumption to replace the existing protocol BLE with WiFi.

Keywords: Bluetooth, internet of things, power consumption, WiFi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3284
483 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Optical fiber, strain, temperature, humidity, measurement, Bragg sensor, SHM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107
482 Performance Monitoring of the Refrigeration System with Minimum Set of Sensors

Authors: Radek Fisera, Petr Stluka

Abstract:

This paper describes a methodology for remote performance monitoring of retail refrigeration systems. The proposed framework starts with monitoring of the whole refrigeration circuit which allows detecting deviations from expected behavior caused by various faults and degradations. The subsequent diagnostics methods drill down deeper in the equipment hierarchy to more specifically determine root causes. An important feature of the proposed concept is that it does not require any additional sensors, and thus, the performance monitoring solution can be deployed at a low installation cost. Moreover only a minimum of contextual information is required, which also substantially reduces time and cost of the deployment process.

Keywords: Condition monitoring, energy baselining, fault detection and diagnostics, commercial refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
481 Light Tracking Fault Tolerant Control System

Authors: J. Florescu, T. Vinay, L. Wang

Abstract:

A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.

Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
480 Development of Scratching Monitoring System Based On Mathematical Model of Unconstrained Bed Sensing Method

Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system; and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: 1st experiment is the subject’s scratching the right side cheek with his right hand, and; 2nd experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.

Keywords: Unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
479 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: Ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
478 Automotive ECU Design with Functional Safety for Electro-Mechanical Actuator Systems

Authors: Kyung-Jung Lee, Young-Hun Ki, Hyun-Sik Ahn

Abstract:

In this paper, we propose a hardware and software design method for automotive Electronic Control Units (ECU) considering the functional safety. The proposed ECU is considered for the application to Electro-Mechanical Actuator systems and the validity of the design method is shown by the application to the Electro-Mechanical Brake (EMB) control system which is used as a brake actuator in Brake-By-Wire (BBW) systems. The importance of a functional safety-based design approach to EMB ECU design has been emphasized because of its safety-critical functions, which are executed with the aid of many electric actuators, sensors, and application software. Based on hazard analysis and risk assessment according to ISO26262, the EMB system should be ASIL-D-compliant, the highest ASIL level. To this end, an external signature watchdog and an Infineon 32-bit microcontroller TriCore are used to reduce risks considering common-cause hardware failure. Moreover, a software design method is introduced for implementing functional safety-oriented monitoring functions based on an asymmetric dual core architecture considering redundancy and diversity. The validity of the proposed ECU design approach is verified by using the EMB Hardware-In-the-Loop (HILS) system, which consists of the EMB assembly, actuator ECU, a host PC, and a few debugging devices. Furthermore, it is shown that the existing sensor fault tolerant control system can be used more effectively for mitigating the effects of hardware and software faults by applying the proposed ECU design method.

Keywords: BBW (Brake-By-wire), EMB (Electro-Mechanical Brake), Functional Safety, ISO26262.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6956
477 Distributed Self-Healing Protocol for Unattended Wireless Sensor Network

Authors: E. Golden Julie, E. Sahaya Rose Vigita, S. Tamil Selvi

Abstract:

Wireless sensor network is vulnerable to a wide range of attacks. Recover secrecy after compromise, to develop technique that can detect intrusions and able to resilient networks that isolates the point(s) of intrusion while maintaining network connectivity for other legitimate users. To define new security metrics to evaluate collaborative intrusion resilience protocol, by leveraging the sensor mobility that allows compromised sensors to recover secure state after compromise. This is obtained with very low overhead and in a fully distributed fashion using extensive simulations support our findings.

Keywords: WSN security, intrusion resilience, compromised sensors, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
476 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Sallehand Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: Readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), and ion sensor electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
475 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Sallehand, Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 Rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: Readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
474 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors

Authors: Amir Anvar, Dong Yang Li

Abstract:

This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.

Keywords: Energy harvesting, power system, oceanic, sensors, autonomous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4310
473 Robot Map Building from Sonar and Laser Information using DSmT with Discounting Theory

Authors: Xinde Li, Xinhan Huang, Min Wang

Abstract:

In this paper, a new method of information fusion – DSmT (Dezert and Smarandache Theory) is introduced to apply to managing and dealing with the uncertain information from robot map building. Here we build grid map form sonar sensors and laser range finder (LRF). The uncertainty mainly comes from sonar sensors and LRF. Aiming to the uncertainty in static environment, we propose Classic DSm (DSmC) model for sonar sensors and laser range finder, and construct the general basic belief assignment function (gbbaf) respectively. Generally speaking, the evidence sources are unreliable in physical system, so we must consider the discounting theory before we apply DSmT. At last, Pioneer II mobile robot serves as a simulation experimental platform. We build 3D grid map of belief layout, then mainly compare the effect of building map using DSmT and DST. Through this simulation experiment, it proves that DSmT is very successful and valid, especially in dealing with highly conflicting information. In short, this study not only finds a new method for building map under static environment, but also supplies with a theory foundation for us to further apply Hybrid DSmT (DSmH) to dynamic unknown environment and multi-robots- building map together.

Keywords: Map building, DSmT, DST, uncertainty, information fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
472 Environmental Inspection using WSANs Based on Multi-agent Coordination Method

Authors: Mohammad J. Heydari, Farnaz Derakhshan

Abstract:

In this paper, we focus on the problem of driving and herding a collection of autonomous actors to a given area. Then, a new method based on multi-agent coordination is proposed for solving the problem. In our proposed method, we assume that the environment is covered by sensors. When an event is occurred, sensors forward information to a sink node. Based on received information, the sink node will estimate the direction and the speed of movement of actors and announce the obtained value to the actors. The actors coordinate to reach the target location.

Keywords: Coordination, Environmental Inspection, Multiagent systems, Wireless Sensor and Actor Networks (WSANs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
471 Design and Implementation of an Intelligent System for Detection of Hazardous Gases using PbPc Sensor Array

Authors: Mahmoud Z. Iskandarani, Nidal F. Shilbayeh

Abstract:

The voltage/current characteristics and the effect of NO2 gas on the electrical conductivity of a PbPc gas sensor array is investigated. The gas sensor is manufactured using vacuum deposition of gold electrodes on sapphire substrate with the leadphathalocyanine vacuum sublimed on the top of the gold electrodes. Two versions of the PbPc gas sensor array are investigated. The tested types differ in the gap sizes between the deposited gold electrodes. The sensors are tested at different temperatures to account for conductivity changes as the molecular adsorption/desorption rate is affected by heat. The obtained results found to be encouraging as the sensors shoed stability and sensitivity towards low concentration of applied NO2 gas.

Keywords: Intelligent System, PbPc, Gas Sensor, Hardware, Software, Neural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
470 Data-driven ASIC for Multichannel Sensors

Authors: Eduard Atkin, Alexander Klyuev, Vitaly Shumikhin

Abstract:

An approach and its implementation in 0.18 m CMOS process of the multichannel ASIC for capacitive (up to 30 pF) sensors are described in the paper. The main design aim was to study an analog data-driven architecture. The design was done for an analog derandomizing function of the 128 to 16 structure. That means that the ASIC structure should provide a parallel front-end readout of 128 input analog sensor signals and after the corresponding fast commutation with appropriate arbitration logic their processing by means of 16 output chains, including analog-to-digital conversion. The principal feature of the ASIC is a low power consumption within 2 mW/channel (including a 9-bit 20Ms/s ADC) at a maximum average channel hit rate not less than 150 kHz.

Keywords: Data-driven architecture, derandomizer, multichannel sensor readout

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
469 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test

Authors: Y. V. Kim

Abstract:

This article presents an approach with regards to the Functional Testing of Space System (SS) that could be a space vehicle (spacecraft-S/C) and/or its equipment and components – S/C subsystems. This test should finalize the Space Qualification Tests (SQT) campaign. It could be considered as a generic test and used for a wide class of SS that, from the point of view of System Dynamics and Control Theory, may be described by the ordinary differential equations. The suggested methodology is based on using semi-natural experiment laboratory stand that does not require complicated, precise and expensive technological control-verification equipment. However, it allows for testing totally assembled system during Assembling, Integration and Testing (AIT) activities at the final phase of SQT, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data are then inserted in a laboratory computer, where it is post-experiment processed by the MATLAB/Simulink Identification Toolbox. It allows for estimating the system dynamics in the form of estimation of its differential equation coefficients through the verification experimental test and comparing them with expected mathematical model, prematurely verified by mathematical simulation during the design process. Mathematical simulation results presented in the article show that this approach could be applicable and helpful in SQT practice. Further semi-natural experiments should specify detail requirements for the test laboratory equipment and test-procedures.

Keywords: system dynamics, space system ground tests, space qualification, system dynamics identification, satellite attitude control, assembling integration and testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501