
 

 

  
Abstract—This paper addresses the problem of recognizing and 

interpreting the behavior of human workers in industrial 
environments for the purpose of integrating humans in software 
controlled manufacturing environments. In this work we propose a 
generic concept in order to derive solutions for task-related manual 
production applications. Thus, we are able to use a versatile concept 
providing flexible components and being less restricted to a specific 
problem or application. We instantiate our concept in a spot welding 
scenario in which the behavior of a human worker is interpreted 
when performing a welding task with a hand welding gun. We 
acquire signals from inertial sensors, video cameras and triggers and 
recognize atomic actions by using pose data from a marker based 
video tracking system and movement data from inertial sensors. 
Recognized atomic actions are analyzed on a higher evaluation level 
by a finite state machine. 
 

Keywords—activity recognition, task modeling, marker-based 
video-tracking, inertial sensors.  

I. INTRODUCTION 
NDUSTRIAL processes in factories require a high degree 
of efficiency for the production of competitive products. 

Therefore, production lines always have been constructed with 
aiming at efficiency by automation of frequently repeated 
tasks. However, the rather stiff organization of automated 
production lines brings along the problem of lacking 
flexibility, which in turn costs a lot of their efficiency in 
situations of changes. To overcome these issues and to make 
production more flexible the EU project XPress (IP026674-2) 
aims at developing a concept for flexible production by using 
intelligent software agents, based on an approach called “the 
Expertonic factory”. One of the major aspects in this project is 
the seamless integration of human workers in software 
controlled production processes. Thus, flexibility of humans 
can be used to support automated production still enabling 
control by intelligent machines.  

The Integration of human workers in a software-controlled 
factory requires a bi-directional interface in order to allow 
flows of information from machine to human and from human 
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to machine, respectively. The flow of information in direction 
from machine to human worker is addressed by human-
machine-interface devices and methods, ranging from “low 
level” solutions like textual task descriptions on computer 
screens up to “high level” solutions such as augmented reality 
task presentations. Besides design issues and augmented 
reality problems, these methods mainly deal with the question 
of converting and presenting computer readable task 
information in forms, which are understandable by human 
workers. Designing an interface for the flow of information 
from human to machine even seems to be a more complex 
problem, if it is desired that information about human worker 
activities is acquired automatically in order to have a feedback 
for the software-controlled factory and to support the worker 
by real-time observation and guidance of the performed task. 

Our work addresses the problem of automatically 
interpreting task-related human behavior in order to create an 
interface from human worker to the intelligent factory. The 
concept for designing solutions for worker behavior 
interpretation should generally be flexible and not restricted to 
specific tasks or working processes. Therefore, our concept is 
focused on a generic description of the process of behavior 
interpretation that enables us to derive solutions with re-
useable components, which may be used for several 
applications. As a demonstration of the concept we present a 
functional sample, which is related to a resistant spot welding 
scenario. In this scenario primitive activities of a human 
worker are recognized and the resulting behavior, consisting 
of series of primitive activities, is interpreted automatically.  

The remainder of this paper is organized as follows: In the 
following section we discuss a selection of state of the art 
work related to the topic of human behavior interpretation and 
human machine cooperation. Our conceptual approach of 
interpreting human behavior is presented in section III. The 
proposed concept has been exemplified by means of a 
functional sample, which is explained in section IV. In section 
V, experiments and results from tests with the functional 
sample are shown and discussed. Finally, conclusion on our 
work is drawn and an outlook for further work is given in 
section VI.  

II. RELATED WORK 
The research field of reasoning about human behavior is 

drawing increasing attention and comprises a lot of work from 
other areas of research related to this topic, such as computer 
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vision, wearable and ubiquitous computing, information 
fusion, machine learning and artificial intelligence. Typical 
application areas in which human behavior is observed or 
interpreted are: security, military, medical engineering and 
healthcare, robotics and human computer interaction. 
Compared to these typical applications, research projects on 
industrial applications are still few, but seem to increase 
lately. 

Before reasoning about human behavior, information about 
humans and their activities has to be acquired. Detecting and 
tracking humans or parts of the human body is a very broad 
and active research field. Especially in the field of visual 
human motion analysis much research has been done and 
work related to this topic has been well reviewed by [4], [1] 
and [8]. Besides visual information, measurements from 
wearable sensor devices are used as well to obtain pose 
information or to track objects or humans. Applications in this 
area often use inertial sensors [10], which may be combined 
with other information from wearable sensors such as 
ultrasonic distance measures [17]. Another work combines 
visual information with measurements from wearable sensors 
by data fusion in order to track industrial tools [11].  

Basing on the acquired information about humans or 
objects, which are utilized by humans, reasoning about human 
behavior can be performed. In [2] position information taken 
from video sequences of an office environment was used to 
recognize the execution of tasks by means of a state machine 
model. Research on similar indoor environment applications 
was done by [9] and [3], using an Abstract Hidden Markov 
Memory Model and a classification method. The work of [12] 
comprises a system for human behavior understanding in 
video sequences based on a hierarchical combination of non-
parametric database sampling and parametric models.  

An approach based on wearable sensor information was 
presented by [15]. In this work different classifier techniques 
were used to detect bicycle repair tasks from ultrasonic and 
motion signals. In [18], activities in a wood workshop were 
classified from acceleration and sound information. 
Furthermore, in [16] wearable sensors have been used to track 
activities in a car manufacturing scenario. 

An interesting formal approach has been presented by [14], 
which incorporates a model of human task-performing 
processes allowing classification of human material handling 
tasks for industrial manufacturing. However, this approach 
does not incorporate how human actions are detected or 
information about humans is derived. 

III. CONCEPTUAL APPROACH 
The reviewed work concentrates on the analysis of specific 

human activities, which results from the fact that recognition 
and interpretation of human behavior is a very complex 
problem. However, in our work of integrating humans in 
software-controlled manufacturing we need to have a more 
general description of the interpretation of task-related worker 
behavior, which is able to provide a certain degree of 

flexibility in form of re-useable components covering 
different application scenarios in manufacturing. Therefore, 
we apply a top-down oriented concept for finding solutions 
for the interpretation of human worker behavior. The worker 
tasks in industrial production on which our work is focused on 
fall into the following categories: 
• Handling task: Characteristic for this category of tasks is 

that specific degrees of freedom, such as pose or state, of 
an object (e.g. a tool or workpiece) are changed over time 
by the worker.  

• Assembly task: In this category, devices are assembled 
from workpieces in a logic-sequential manner of task 
steps. Trained workers often perform substeps in these 
tasks in a gesture-like way. 

• Maintenance task: Similar to assembly tasks, tasks of this 
category are performed in a sequence of actions 
according to a maintenance plan. However, there are 
some particular actions which appear to be more abstract 
than steps in an assembly task (such as visual 
inspections). 

 
In regard to the state of the art in the field of activity 

recognition and behavior interpretation and according to our 
problem, interpretation of human behavior can be described as 
a hierarchical chain of several processing instances, as it is 
shown in Fig. 1. The different levels of abstraction on which 
signals and data are processed in order to reason about 
behaviour of the complexity of tasks are explained in the 
following: 

• On the lowest level, sensor data has to be acquired from 
appropriate sensor devices, in order to have physical 
information for further processing. This physical information 
can be any information related to worker activities, such as 
visual information form camera images, spatial movement 
signals, switches indicating tool usage, etc. The sensor data 
level includes measuring raw data as well as preprocessing 
such raw data, thus offering a suitable input for superordinate 
processing levels. Sensor devices may be subdivided into 
categories with complementary properties, namely wearable 
and remote sensor devices. Remote devices (cameras, laser 
scanners, ultrasound, etc.) are sensors, which provide 
measurements with a fixed relation to the environment or a 
world coordinate system, but are in turn prone to erroneous 
environmental influences such as occlusion or reflections. In 
contrast to that, wearable devices (accelerometers, gyros, 
speedometers, switches etc.) do only provide measurements 
depending on the internal state of the measured object and are 
not prone to external erroneous influences.  

• After acquisition and preprocessing of relevant sensor 
data, sophisticated signal processing methods may be used to 
enhance raw data or to derive information, which is not 
directly available from raw sensor data (e.g. position data 
from images). Furthermore, data from several sensor sources 
can be processed in a combined way by using multi-sensor 
integration or sensor fusion methods [7].  

• Activity recognition methods either use raw or processed 
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sensor signals for recognizing primitive human actions (such 
as grasping an object or moving to a specific position) in form 
of symbolic data or probabilities. In our work we distinguish 
between two classes of methods: time variant methods 
incorporating temporal variations (e.g. by time series analysis 
[20,21]) and time invariant methods, which are based on 
classification of features calculated from subsumed signals 
(e.g. classification of features derived from sliding window 
filtering [19]). The major difference between these classes of 
methods is that time variant methods regard temporal patterns 
(for instance of gesture-like actions) and that time invariant 
methods are able to generalize signal parts containing less 
temporal information. For some applications, a combination of 
techniques of both categories may be reasonable in order to 
benefit from their particular advantages. Activity recognition 
often requires a high degree of adaptation to a specific 
problem (e.g. training).  

 
 

 
Fig. 1 Process instances for interpretation of human worker behavior  

 
• On the behavior interpretation level, task-related worker 

behavior is analyzed. The intention is to detect if tasks are 
executed correctly or if there occur any non-conformities. 
Thus, behavior on this level represents the complete worker 
task (such as handling tools for working on work pieces or 
assembling a product from several parts) and is modeled by 
interrelated atomic actions from the subordinate level. In our 
work we define worker tasks as sequences of task steps or 
atomic actions. According to our knowledge, most of the 
worker tasks in industry can be described in a graph-like 
manner (e.g. assembly schedules). Thus, worker behavior can 
be modeled by using state based methods which may be based 
on either deterministic models (state machines, Petri nets) or 
probabilistic models (Hidden Markov Models). As well as on 
the Activity recognition level, the behavior model strongly 
depends on the specific task to be observed.   

 
Because of the complexity of the problem of interpreting 

human behavior, solutions for applications have to be adapted 
to a specific problem or task to be interpreted. However, since 
our work addresses flexible production, we use a conceptual 

formulation, which works as a generic framework for the 
design of solutions that should provide flexibility in form of a 
high degree of re-useable components. This generic 
framework consists of levels of process instances according to 
Fig. 1 and a top-down oriented concept for the design of task-
specific solutions.  

Generally, there are two ways to approach a specific human 
worker behavior interpretation problem. The commonly used 
bottom-up approach starts with the data available from the 
worker or process by specific sensor devices. Then 
appropriate methods how to recognize actions and how to 
reason about human worker behavior are applied to these data. 
The alternative way, which we favor in here, is to approach 
the problem in a top-down-oriented manner. The task to be 
monitored is first split up into several interrelated task steps, 
which are essential for the task execution of the task or which 
indicate eventual non-conformities. All task steps are 
represented by related atomic actions that have to be 
recognized. Then, methods for the recognition of these atomic 
actions and, furthermore, adequate sensors and processing 
methods for the sensor data have to be chosen.  

There are several advantages and drawbacks associated 
with both approaches. On the one hand, it sounds logically 
that desired information determines what methods and devices 
should be used and that a top-down approach is able to 
provide a higher degree of re-usability due to structured 
components. However, on the other hand performance of 
methods and appropriateness of sensor devices determine 
which information may be derived. Therefore, we treat the 
problem of finding appropriate techniques for each level of 
process instances by including both ways of thinking in our 
conceptual problem formulation for the interpretation of 
worker behavior, which is illustrated in Fig. 2.  

 
 

 
Fig. 2 Approaching the problem of finding appropriate techniques for 

process instance levels 
 
Here we start in the described top-down manner with 

modeling of the worker task, defining atomic actions and 
choosing processing methods and sensor devices. Then 
eventually modifications of models and methods used in the 
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higher process instances have to be made in the case of the un-
availability of required signals or sensor data. Finally, 
experimental system testing and validation eventually demand 
further method adaptations at the activity recognition and 
behavior interpretation level. With this approach we intend to 
find solutions for specific worker behavior interpretation 
problems which are flexible in a way that they contain 
structured components providing a high degree of re-usability. 

It should be noted that boundary conditions for designing 
applications in industrial environments also have to be 
considered as additional factors. This mainly includes issues 
such as safety rules for human workers or legal regulations, 
e.g. data privacy policy.  

IV. SAMPLE DEMONSTRATION OF THE APPROACH 
After the formulation of our conceptual approach, a so 

called “functional sample” has been set up, which addresses 
the scenario of resistance spot welding with a hand welding 
gun. This handling task scenario represents a common task, 
which is executed by human workers in the automotive 
industry at workplaces where no robots are deployed.  

For the development of this functional sample the proposed 
approach is applied in order to create such a behaviour 
interpretation system with structured and re-useable 
components. 

A. Scenario and Worker Task Description  
In our scenario we assume, that a task is being given to the 

worker, in which the worker should weld a car body door at 
predefined positions. Fig. 3 shows the tool used in this 
scenario (hand welding gun) as well as the work piece (car 
body door). As preconditions we assume that the car door is 
locked into position and that the positions of the welding spots 
are known in 3D space. In the scenario, we have five welding 
spots with defined positions related to the car door as 
indicated in Fig. 3 b). The worker task is to manipulate the six 
degrees of freedom (pose) of the welding gun tip (welding 
gun handling) in order to align the welding gun to the spot 
poses and pull the trigger on the welding gun to release a 
welding process. It does not have to be taken care about the 
spot welding process itself, since this is done by the welding 
gun controller. The objective of the behavior interpretation 
system is to observe if the worker executes the given task 
correctly after he has been instructed. Correct execution of the 
worker task has been defined as follows:  
1) Pick up the welding gun from the storage position. 
2) Move the gun to the first welding spot pose. 
3) Start the welding process by pulling the welding gun 

trigger, when the welding gun is aligned to the spot (i.e. 
at the correct position and gun stable).     

4) Repeat steps 2 and 3 for the other four remaining spots. 
5) Finish the task by putting the welding gun back to the 

storage.   
 

Besides observing the execution of the task, non-
conformities in form of welding at wrong positions, welding 

when the gun is still moving and (re-) welding of already 
welded spots have to be detected and prevented. The quality 
tolerance for the welding spots has been defined as a 
maximum deviation of 15mm from the target position. 

 
 

a)

c)

b)

Welding 
spots

 
Fig. 3 a) Car body door used as work piece in welding gun scenario. 
b) Positions of the spots to be welded indicated on the car door. c) 

Welding gun.   
 

B. Approach towards a Worker Behavior Interpretation 
System  

In order to find an approach for interpreting worker 
behavior in the welding gun scenario, we proceeded according 
to our proposal from the previous section by first modeling the 
scenario in a top-down manner. It should be noted that in our 
scenario the worker himself must not be monitored (due to 
legal regulations of the automotive industry). Therefore, the 
tool rather than the worker has been selected as the target 
object to be observed for reasoning about worker behavior. 
Due to the strong relation between task execution and tool 
usage in this handling task scenario this means no serious 
limitation. 

The decomposition of the worker task resulted in a model 
which is shown in Fig. 4 by the essential states of its related 
statechart. This statechart model comprises task steps as states 
and atomic actions as transitions between states. The initial 
state (wait for worker) represents the initial situation and 
indicates that the welding gun is located in the storage. In this 
state all guard conditions are set to value “true”. By 
recognizing the atomic action that the gun has been picked up 
from the storage (action “remove gun from storage”) it is 
recognized that the worker has started his task execution and 
is now moving the welding gun somewhere in the workspace 
(state “tool moving”). Next it has to be recognized, when the 
worker aligns the welding gun to the pose of a welding spot 
(state “tool at spot n”), then if the worker holds the gun stable 
(state “ready to weld spot n”) and finally if the welding gun 
trigger has been pulled so that the welding is executed (state 
“welding spot n”). Additionally, incorrect behavior by pulling 
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the welding gun trigger when not in state “ready to weld” is 
being modeled (state “misbehavior”). The end of the task 
execution is modeled by recognizing if the welding gun has 
been returned to the storage position and if all spots have been 
welded.  

 
 

 
Fig. 4 Human worker behavior model for welding gun scenario 
 
With this decomposition all task steps necessary for the 

correct execution of the task according to the worker task 
description have been modeled including the detection of 
misbehavior. In specific states output information is created 
by the system either for giving feedback to the worker 
(display) or for triggering the welding controller to make a 
weld.  

Besides the recognition of atomic actions guard conditions 
(“guard1-n“ and “guardfinish”) are used along with a protocol list 
in order to avoid welding of already welded spots and to 
ensure completion of the task.  

After having decomposed the worker task and modeled 
dependency relations between task steps, it has to be defined 
how the atomic actions from Fig. 4 can be recognized. The 
outcome is straightforward and based on the recognition of 
position and motion of the welding gun and trigger signals, as 
listed in the following: 
• Action 1: Remove gun from storage: storage trigger 

signal. 
• Action 2: Return gun to storage: storage trigger signal. 
• Actions 3.n: Aligned to spot n: in position at welding spot 

number n. 
• Action 4: Welding gun is moving: motion detection. 
• Action 5: Welding gun trigger pulled: welding trigger 

signal. 
 
Due to the simplicity of the action, recognition of trigger 

values is realized by checking binary information from storage 
proximity switches and the gun trigger switch. Pose alignment 
and motion analysis, are carried out by distance measurements 
with position signals and thresholding of motion signals, 
respectively. 

The remaining instances of the worker behavior 

interpretation system, which have to be selected, are the 
appropriate sensor devices for the sensor data level and, 
optionally, signal processing methods to derive input 
information for the activity recognition level from raw sensor 
data. The initial choice was for a marker based video tracking 
system to acquire position and attitude measurements of the 
welding gun from video camera data streams. However, video 
tracking is computationally expensive and provides low 
sampling rates at high latency. Furthermore, video cameras 
are remote sensor sources, which are prone to disturbances 
such as occlusions. Therefore, the idea was to support video 
tracking by wearable high-frequent measurements from 
inertial sensors, which measure accelerations and angular 
rates. This combination should be able to provide remote-
sensed low frequent position information and high frequent 
internal movement information. At last, trigger signal 
information should be provided by binary switches. 

C. Methodology in Detail   
In the previous section an approach for our scenario has 

been presented in form of a sketch of methodology. For this 
methodology a detailed explanation is given in the following: 

Sensor Data and Signal Processing: Video-Tracking 
System   

In video-based tracking, position and attitude denoted as six 
degrees of freedom (6DoF) of a certain object have to solely 
be determined from video stream data captured from one or 
more cameras. As a first step, this comprises the recognition, 
localization, and identification of the object in a camera 
image. Once the presence of the object has been verified, its 
position and orientation has to be computed by utilizing 
known geometric features. 

A common approach to support the aforementioned 
processing steps is to attach fiducial markers to the object. 
The markers used in our system (see Fig. 5) have black 
borders on a white background for maximum contrast, to 
facilitate their detection and localization in a camera image. 
Furthermore, each marker holds a unique binary code pattern 
that allows identification of the marker and the associated 
object.  

Given a calibrated camera, the 6DoF of a size-known 
marker can be estimated by using its corner points, which may 
be extracted by image processing methods. In 
photogrammetry, this process is referred to as “pose 
estimation” and describes the matching of a set of points in 3D 
space to their projection in 2D image space. The 
correspondence between those points can be expressed by a 
set of equations, whose unknowns are uniquely related to the 
6DoF of the corner point set, with respect to the camera 
coordinate system. Though the four corner points from a 
single marker are sufficient for pose estimation, a 
considerably higher accuracy is obtained by placing marker 
clusters on the tracked object. This redundancy allows 
compensation of measurement errors that are caused by image 
noise. The same effect can be achieved by combining 
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multiple, synchronized cameras that are directed at the object. 
Besides this, multiple cameras may be used to increase both 
the field of view as well as the reliability of the system in 
occlusion situations. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Square fiducial marker 

    
Much research on marker-based video tracking has been 

done in the field of augmented reality. A prominent outcome 
is ARToolkit [6], a software library dedicated to real-time 
marker tracking. We developed a pose estimation system for 
rigid bodies based on attached square markers [13]. For this 
purpose, a robust algorithm for the detection and exact 
localisation of square makers was developed, which is highly 
invariant against illumination variation. The accuracy of pose 
measurement was further improved by the incorporation of 
multiple camera fusion method, which was embedded in a 
flexible and dynamic system of pose tracking of multiple 
objects in complex and freely configurable scenarios. 

 

 
Fig. 6 Video tracking with a welding gun mock-up 

 
For the functional sample, we use two consumer-grade 

USB-webcams at a resolution of 640x480 pixel. We equipped 
the welding gun with 22 markers at known positions in a 
defined welding gun coordinate system (Fig. 6 shows the 
tracking system with a welding gun mock up). Additional 
markers placed at the car door span the reference coordinate 

system for DoF data. Under appropriate illumination 
conditions, the video system provides measurements within a 
range of some millimeters of accuracy at a sampling rate of 
about 10 Hz. 

Sensor Data: Inertial Sensors  
For the purpose of providing high-frequency acceleration 

and angular rate signals, measured by a wearable device, a 
low cost inertial measurement unit (IMU), based on affordable 
MEMS technology, was utilized. The IMU measures 
accelerations and angular rates in 3D space from 3 
acceleration and gyro sensor modules, each of them 
perpendicular to each other. From these raw data 
measurements, high frequent motion signals can be derived 
without the need of a line of sight in contrast to video sensors. 
When using inertial sensors it has to be considered for signal 
processing that sampled sensor signals of the IMU are prone 
to erroneous influences, of which signal noise and time-
varying biases are most important for this particular 
application. The drift of bias values in the sensor signals 
makes it necessary that the IMU has to be calibrated before 
usage. In case of angular rate signals proper calibration can be 
achieved by measuring bias values when the IMU is in a 
stable position. However, for measuring offset values of 
acceleration sensors their attitude must be known, because of 
the influence of gravity. 

In our functional sample, the welding gun has been 
equipped with the SHAKE SK6 sensor device of the company 
samh Engineering Services. This device provides 6DoF 
acceleration and angular rate measurements with a sampling 
rate of up to 256 Hz, such as further movement-related sensor 
data (e.g. magnetometer), which may allow reusability in 
other scenarios. 

Sensor Data: Trigger Signals  
Trigger signals have been defined for the indication of 

(simple) atomic actions of the following type of discrete 
events: “welding gun trigger pulled”, “remove gun from 
storage” and “return gun to storage”. The acquisition of these 
signals has been realized straightforward by using binary 
switches, one attached to the welding gun representing the 
welding gun trigger and another one indicating the storage 
position of the welding gun. 

Activity Recognition: Spatial Deviation Detection  
Basing on position information of the welding gun tip, the 

spatial deviation of the welding gun to the position of a 
welding spot can easily be derived by evaluating the euclidean 
norm spotd  of the difference between welding gun tip position 

p  and spot position spotp , according to  

spotspot ppd −= .              (1) 

By this it can be checked if the spatial deviation of the 
welding gun is below the threshold value of the desired 
tolerance (e.g. 15mm) for all welding spot positions. 

 The thresholded signal represents a quantization of the 
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continuous position values of IR³ into discrete position spaces, 
representing atomic actions of the type of “aligned to spot n”. 

Activity Recognition: Motion Detection  
Another type of atomic action to be recognized is the 

motion indicator “welding gun is moving”. Motion of the 
welding gun can simply be recognized by evaluating, if 
angular rate and acceleration measurements are within 
predefined thresholds. Thus, a binary signal (motion/ no 
motion) with high frequent sampling rates is created, which is 
used as additional information to video-tracked position 
values.  

In order to avoid the effort that the attitude of the IMU has 
to be known for calibrating acceleration offsets, we use the 
length absa  of the vector of the perpendicular accelerations 

zyx aaa ,,  for motion detection:  

( ) ( ) ( )222
zyxabs aaaa ++=          (2) 

Given absa  and the values of the angular rate 
measurements motion is assumed when any of the four named 
values is above a defined threshold value. 

Behavior Interpretation: Statechart  
A statechart is a part of the UML for graphically describing 

finite state machines with a complex structure. Statecharts 
have been introduced by David Harel [5] with the intention to 
extend the formalisms of common state diagrams (e.g. by 
features of hierarchical structures, concurrencies and 
communication between states) in order to handle visual 
descriptions of complex systems.   

In our functional sample we use a finite state machine 
represented by the statechart that we presented in Fig. 4. 
According to this statechart, the worker task is modeled as a 
sequence of task steps, related to each other by transitions in 
the form of atomic actions and optional guard conditions. The 
transitions result from atomic actions in the form of binary 
trigger signals, spatial deviation detection information and 
motion detection results. In most of the states outputs are 
emitted, comprising signals to enable or disable the welding 
gun trigger or to provide worker feedback information. 

With this functional sample we designed a worker behavior 
interpretation solution that may be adapted to other tool 
handling task scenarios as well. Especially the video tracking 
and inertial sensor components are re-useable in particular, 
since they provide pose data and internal movement data, 
which are essential characteristics for a lot of manufacturing 
tasks. 

V. EXPERIMENTS 
For testing our functional sample approach, a test 

environment has been set up with a car door clamped in a 
fixture, which represents the working place for the welding 
task (Fig. 7). As mentioned, we use two cameras for our video 
tracking system, which increases the robustness and accuracy 

of the position estimation result compared to a single camera 
system. The sensor box with the IMU is mounted on the 
welding gun as shown in Fig. 7. 

The positions of the welding spots are defined in a world 
coordinate system with a fixed reference to the car door. By 
using a calibration pattern, which is placed on a defined 
position on the car door, the video tracking system can be 
calibrated, which is necessary when the spatial relation 
between cameras and car door is changed. Calibration of the 
IMU hast to be done before every test run, because of the 
time-varying biases. 

 
 

 
Fig. 7 Functional sample set up 

 
In order to show the operational reliability of our system, 

tests have been done to show the accuracy of the video 
tracker, since it is one of the most important components, as 
well as the performance of the overall system. All tests have 
been done with a welding gun mock up, which is shown in 
Fig. 6, because of the easier handling for tests. However, our 
test results are transferable to the real welding gun, since the 
measurement principle is the same. 

The statistical evaluation result of the video tracker 
accuracy tests can be seen in Table I. Disregarding single 
outliers (which rarely occur) we can say that this result is 
sufficient for the requirement of a maximum tolerance of 
15mm. For these tests the welding gun tip has been moved 
along paths parallel to the axes of the reference coordinate 
system (so that for each path the reference values of only one 
coordinate varied). In the table the values of the stable axes 
have been evaluated. The tests contains 5 repetitions of test 
runs in which the gun tip has been moved with different 
alignment to the defined paths. From the table we can see that 
the deviation of the signal becomes most significant in 
direction of the y-axis (the reason for that is the geometric 
arrangement of the cameras). The maximal error created by an 
outlier has been 16mm and the typical deviation in direction 
of the y-axis has been 6mm.  
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As for the detection of high-frequency motions with inertial 

sensors thresholding the raw sensor measurements turned out 
to be a appropriate method to detect motions. Nevertheless, it 
has to be kept in mind that translational movements at a 
constant speed can’t be detected by this method. However this 
means no limitation, because these movements are detected by 
the video tracker.  

The functionality of the complete system has been 
evaluated in several tests. Fig. 8 and Fig. 9 show a typical test 
result of detected state sequences for correct worker behavior 
and the result of a test in which incorrect worker behavior had 
to be detected. For each test a reference was taken by a human 
observer (indicated by black values) representing the ground 
truth for the state values (indicated by red values). In both 
figures states from Fig. 4 are denoted after: 0 – “tool moving”; 
1- “tool at spot n”; 2- “ready to weld spot n”; 3- “welding spot 
n” ( or trigger pulled in case of a reference value); -1 – 
“misbehavior”. Additional information about the current spot 
number (i.e. the spot to which the states 1-3 are related) from 
the reference and from the protocol list is written under related 
states. 

Fig. 8 shows the result of a test in which the four welding 
spots of our scenario have been welded correctly. As we can 
see, all states have been detected according to the reference 
excepting a small inaccuracy when the worker approached the 
first spot. Such inaccuracies are caused by outliers in the 
position measurements of the video tracker. It has to be noted 
that temporal deviations of one second as those which occur at 
state 3 are to be neglected, because they are an erroneous 
effect of visual evaluation. 

Besides correct worker behavior, tests have been done to 
evaluate situations of incorrect worker behavior. A typical 
example is given in Fig. 9, in which misbehavior is related to 
three situations according to the scenario description, namely: 
welding at a wrong position, welding when the gun is in 
motion and (re-) welding of an already welded spot. 

From the figure we can see that after spot number 2 had 
been welded correctly the welding trigger has been pulled 
without the welding gun being aligned to a welding spot 
position. After that the welding gun has been positioned in the 
area of a welding spot, but the welding gun trigger has been 
pulled when the tool was still in motion. Finally, the welding 
gun has been correctly aligned again to spot number 2 with 
the trigger being pulled when the gun wasn’t moving. From 
the figure we can see that all three situations in which the 
worker executed the task incorrectly have been correctly 
interpreted as misbehavior.  

 
 

 
Fig. 8 Evaluation of correct worker behavior 

 
 

 
Fig. 9 Evaluation of incorrect worker behavior 

VI. CONCLUSION AND OUTLOOK 
In our work we introduced a general approach for 

interpreting human worker behavior with regard to flexible 
production. The process of interpreting worker behavior 
according to a given task has been described as a framework 
of the four levels of process instances of Fig. 1. By 
approaching given problems in a top down manner (with 
adaptation after experimental validation) our target is to find 
flexible solutions with re-useable components that are easy to 
adapt to new scenarios of interpreting worker behavior. 

By means of the welding gun scenario we demonstrated a 
worker behavior interpretation solution that may also be 
applied to other tool handling task scenarios. This can be 
achieved by a new definition of the task model on the highest 
level of abstraction and some minor adaptations to the other 
levels. Furthermore, the video tracking and inertial sensor 
components are re-useable in other scenarios as well, 
regarding the fact that pose and internal movement 
information are essential characteristics for a lot of 
manufacturing tasks. Thus, they are generally not restricted to 
any specific application 

As future work some improvements can be done to the tool 
handling scenario. Similar to the work of [11] inertial sensor 
measurements and position data from the video tracking 

TABLE I 
POSITION ESTIMATION ACCURACY 

Coordinate Reference1) Mean1) Squared 
deviation2) 

 Maximal 
deviation1) 

x 165,714 165,172 5,576 6,614 
y -57,143 -57,431 34,961 16,233 
z 0 1,985 6,959 6,701 

1) in [mm] 
2) in [mm2] 
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system may be fused in order to improve the quality of tracked 
positions or deal with video tracking outliers or short time 
occlusions.  

Besides that, our ongoing work is dealing with a scenario of 
higher complexity, in which the worker task is to manually 
assemble parts (assembly task). This scenario is of particular 
interest, since there can be a high variance in the way in which 
a worker assembles parts. Moreover, the detection of atomic 
actions in this scenario is more difficult than in the welding 
gun scenario. 
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