Search results for: Non-symmetrical load
1342 Influence of Improved Roughage Quality and Period of Meal Termination on Digesta Load in the Digestive Organs of Goats
Authors: Rasheed A. Adebayo, Mehluli M. Moyo, Ignatius V. Nsahlai
Abstract:
Ruminants are known to relish roughage for productivity but the effect of its quality on digesta load in rumen, omasum, abomasum and other distal organs of the digestive tract is yet unknown. Reticulorumen fill is a strong indicator for long-term control of intake in ruminants. As such, the measurement and prediction of digesta load in these compartments may be crucial to productivity in the ruminant industry. The current study aimed at determining the effect of (a) diet quality on digesta load in digestive organs of goats, and (b) period of meal termination on the reticulorumen fill and digesta load in other distal compartments of the digestive tract of goats. Goats were fed with urea-treated hay (UTH), urea-sprayed hay (USH) and non-treated hay (NTH). At the end of eight weeks of a feeding trial period, upon termination of a meal in the morning, afternoon or evening, all goats were slaughtered in random groups of three per day to measure reticulorumen fill and digesta loads in other distal compartments of the digestive tract. Both diet quality and period affected (P < 0.05) the measure of reticulorumen fill. However, reticulorumen fill in the evening was larger (P < 0.05) than afternoon, while afternoon was similar (P > 0.05) to morning. Also, diet quality affected (P < 0.05) the wet omasal digesta load, wet abomasum, dry abomasum and dry caecum digesta loads but did not affect (P > 0.05) both wet and dry digesta loads in other compartments of the digestive tract. Period of measurement did not affect (P > 0.05) the wet omasal digesta load, and both wet and dry digesta loads in other compartments of the digestive tract except wet abomasum digesta load (P < 0.05) and dry caecum digesta load (P < 0.05). Both wet and dry reticulorumen fill were correlated (P < 0.05) with omasum (r = 0.623) and (r = 0.723), respectively. In conclusion, reticulorumen fill of goats decreased by improving the roughage quality; and the period of meal termination and measurement of the fill is a key factor to the quantity of digesta load.
Keywords: Digesta, goats, meal termination, reticulorumen fill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8141341 Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads
Authors: Bahi-Eddine Lahouel, Mohamed Guenfoud
Abstract:
In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.Keywords: Vibration, Buckling, Cutout, Laminated composite, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541340 The Intensity of Load Experienced by Female Basketball Players during Competitive Games
Authors: Tomáš Vencúrik, Jiří Nykodým
Abstract:
This study compares the intensity of game load among player positions and between the 1st and the 2nd half of the games. Two guards, three forwards, and three centers (female basketball players) participated in this study. The heart rate (HR) and its development were monitored during two competitive games. Statistically insignificant differences in the intensity of game load were recorded between guards, forwards, and centers below and above 85% of the maximal heart rate (HRmax) and in the mean HR as % of HRmax (87.81±3.79%, 87.02±4.37%, and 88.76±3.54%, respectively). Moreover, when the 1st and the 2nd half of the games were compared in the mean HR (87.89±4.18% vs. 88.14±3.63% of HRmax), no statistical significance was recorded. This information can be useful for coaching staff, to manage and to precisely plan the training process.Keywords: Game load, heart rate, player positions, the 1st and the 2nd half of the games.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431339 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load
Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir
Abstract:
Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.
Keywords: Airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7141338 Improved Torque Control of Electrical Load Simulator with Parameters and State Estimation
Authors: Nasim Ullah, Shaoping Wang
Abstract:
ELS is an important ground based hardware in the loop simulator used for aerodynamics torque loading experiments of the actuators under test. This work focuses on improvement of the transient response of torque controller with parameters uncertainty of Electrical Load Simulator (ELS).The parameters of load simulator are estimated online and the model is updated, eliminating the model error and improving the steady state torque tracking response of torque controller. To improve the Transient control performance the gain of robust term of SMC is updated online using fuzzy logic system based on the amount of uncertainty in parameters of load simulator. The states of load simulator which cannot be measured directly are estimated using luenberger observer with update of new estimated parameters. The stability of the control scheme is verified using Lyapunov theorem. The validity of proposed control scheme is verified using simulations.Keywords: ELS, Observer, Transient Performance, SMC, Extra Torque, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361337 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization
Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip
Abstract:
This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction
Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581336 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Numerical Aspects
Authors: Mário C. Ricci
Abstract:
A known iterative computational procedure is used for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections between the raceways.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741335 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10751334 A Genetic Algorithm for Optimum Design of PID Controller in Load Frequency Control
Authors: T. Hussein
Abstract:
In this paper, determining the optimal proportionalintegral- derivative (PID) controller gains of an single-area load frequency control (LFC) system using genetic algorithm (GA) is presented. The LFC is notoriously difficult to control optimally using conventionally tuning a PID controller because the system parameters are constantly changing. It is for this reason the GA as tuning strategy was applied. The simulation has been conducted in MATLAB Simulink package for single area power system. the simulation results shows the effectiveness performance of under various disturbance.Keywords: Load Frequency Control (LFC), PID controller and Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37391333 Application of Load Transfer Technique for Distribution Power Flow Analysis
Authors: Udomsak Thongkrajay, Padej Pao-La-Or, Thanatchai Kulworawanichpong
Abstract:
Installation of power compensation equipment in some cases places additional buses into the system. Therefore, a total number of power flow equations and voltage unknowns increase due to additional locations of installed devices. In this circumstance, power flow calculation is more complicated. It may result in a computational convergence problem. This paper presents a power flow calculation by using Newton-Raphson iterative method together with the proposed load transfer technique. This concept is to eliminate additional buses by transferring installed loads at the new buses to existing two adjacent buses. Thus, the total number of power flow equations is not changed. The overall computational speed is expectedly shorter than that of solving the problem without applying the load transfer technique. A 15-bus test system is employed for test to evaluate the effectiveness of the proposed load transfer technique. As a result, the total number of iteration required and execution time is significantly reduced.Keywords: Load transfer technique, Newton-Raphson power flow, ill-condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501332 Optimal Economic Load Dispatch Using Genetic Algorithms
Authors: Vijay Kumar, Jagdev Singh, Yaduvir Singh, Sanjay Sood
Abstract:
In a practical power system, the power plants are not located at the same distance from the center of loads and their fuel costs are different. Also, under normal operating conditions, the generation capacity is more than the total load demand and losses. Thus, there are many options for scheduling generation. In an interconnected power system, the objective is to find the real and reactive power scheduling of each power plant in such a way as to minimize the operating cost. This means that the generator’s real and reactive powers are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost. This is called optimal power flow problem. In this paper, Economic Load Dispatch (ELD) of real power generation is considered. Economic Load Dispatch (ELD) is the scheduling of generators to minimize total operating cost of generator units subjected to equality constraint of power balance within the minimum and maximum operating limits of the generating units. In this paper, genetic algorithms are considered. ELD solutions are found by solving the conventional load flow equations while at the same time minimizing the fuel costs.Keywords: ELD, Equality constraints, Genetic algorithms, Strings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38591331 Shaft Friction of Bored Pile Socketed in Weathered Limestone in Qatar
Authors: Thanawat Chuleekiat
Abstract:
Socketing of bored piles in rock is always seen as a matter of debate on construction sites between consultants and contractors. The socketing depth normally depends on the type of rock, depth at which the rock is available below the pile cap and load carrying capacity of the pile. In this paper, the review of field load test data of drilled shaft socketed in weathered limestone conducted using conventional static pile load test and dynamic pile load test was made to evaluate a unit shaft friction for the bored piles socketed in weathered limestone (weak rock). The borehole drilling data were also reviewed in conjunction with the pile test result. In addition, the back-calculated unit shaft friction was reviewed against various empirical methods for bored piles socketed in weak rock. The paper concludes with an estimated ultimate unit shaft friction from the case study in Qatar for preliminary design.Keywords: Piled foundation, weathered limestone, shaft friction, rock socket, pile load test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10981330 Dynamic Load Balancing Strategy for Grid Computing
Authors: Belabbas Yagoubi, Yahya Slimani
Abstract:
Workload and resource management are two essential functions provided at the service level of the grid software infrastructure. To improve the global throughput of these software environments, workloads have to be evenly scheduled among the available resources. To realize this goal several load balancing strategies and algorithms have been proposed. Most strategies were developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However for computational grids we must address main new issues, namely: heterogeneity, scalability and adaptability. In this paper, we propose a layered algorithm which achieve dynamic load balancing in grid computing. Based on a tree model, our algorithm presents the following main features: (i) it is layered; (ii) it supports heterogeneity and scalability; and, (iii) it is totally independent from any physical architecture of a grid.
Keywords: Grid computing, load balancing, workload, tree based model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31381329 Qualitative Parametric Comparison of Load Balancing Algorithms in Parallel and Distributed Computing Environment
Authors: Amit Chhabra, Gurvinder Singh, Sandeep Singh Waraich, Bhavneet Sidhu, Gaurav Kumar
Abstract:
Decrease in hardware costs and advances in computer networking technologies have led to increased interest in the use of large-scale parallel and distributed computing systems. One of the biggest issues in such systems is the development of effective techniques/algorithms for the distribution of the processes/load of a parallel program on multiple hosts to achieve goal(s) such as minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughput. Substantive research using queuing analysis and assuming job arrivals following a Poisson pattern, have shown that in a multi-host system the probability of one of the hosts being idle while other host has multiple jobs queued up can be very high. Such imbalances in system load suggest that performance can be improved by either transferring jobs from the currently heavily loaded hosts to the lightly loaded ones or distributing load evenly/fairly among the hosts .The algorithms known as load balancing algorithms, helps to achieve the above said goal(s). These algorithms come into two basic categories - static and dynamic. Whereas static load balancing algorithms (SLB) take decisions regarding assignment of tasks to processors based on the average estimated values of process execution times and communication delays at compile time, Dynamic load balancing algorithms (DLB) are adaptive to changing situations and take decisions at run time. The objective of this paper work is to identify qualitative parameters for the comparison of above said algorithms. In future this work can be extended to develop an experimental environment to study these Load balancing algorithms based on comparative parameters quantitatively.Keywords: SLB, DLB, Host, Algorithm and Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16571328 Transmission Planning – a Probabilistic Load Flow Perspective
Authors: Constantin Barbulescu, Gh. Vuc, Stefan Kilyeni, Dan Jigoria-Oprea, Oana Pop
Abstract:
Perhaps no single issue has been cited as either the root cause and / or the greatest challenge to the restructured power system then the lack of adequate reliable transmission. Probabilistic transmission planning has become increasingly necessary and important in recent years. The transmission planning analysis carried out by the authors, spans a 10-year horizon, taking into consideration a value of 2 % load increase / year at each consumer. Taking into consideration this increased load, a probabilistic power flow was carried out, all the system components being regarded from probabilistic point of view. Several contingencies have been generated, for assessing the security of the power system. The results have been analyzed and several important conclusions were pointed. The objective is to achieve a network that works without limit violations for all (or most of) scenario realizations. The case study is represented by the IEEE 14 buses test power system.Keywords: Contingency, load, operating state, probabilistic power flow, transmission planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621327 Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load
Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh
Abstract:
One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems.
Keywords: Axial load, cavity, inclined load, strip footing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941326 Effect of Ground Subsidence on Load Sharing and Settlement of Raft and Piled Raft Foundations
Authors: T.V. Tran, S. Teramoto, M. Kimura, T. Boonyatee, Le Ba Vinh
Abstract:
In this paper, two centrifugal model tests (case 1: raft foundation, case 2: 2x2 piled raft foundation) were conducted in order to evaluate the effect of ground subsidence on load sharing among piles and raft and settlement of raft and piled raft foundations. For each case, two conditions consisting of undrained (without groundwater pumping) and drained (with groundwater pumping) conditions were considered. Vertical loads were applied to the models after the foundations were completely consolidated by selfweight at 50g. The results show that load sharing by the piles in piled raft foundation (piled load share) for drained condition decreases faster than that for undrained condition. Settlement of both raft and piled raft foundations for drained condition increases more quickly than that for undrained condition. In addition, the settlement of raft foundation increases more largely than the settlement of piled raft foundation for drained condition.Keywords: Ground subsidence, Piled raft, Load sharing, Centrifugal model test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29261325 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach
Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh
Abstract:
Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. Based on this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC).After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.
Keywords: Frequency Control, Islanded Micro-grid, Load shedding, Multi-agent System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29371324 Heterogeneity-Aware Load Balancing for Multimedia Access over Wireless LAN Hotspots
Authors: Yen-Cheng Chen, Gong-Da Fang
Abstract:
Wireless LAN (WLAN) access in public hotspot areas becomes popular in the recent years. Since more and more multimedia information is available in the Internet, there is an increasing demand for accessing multimedia information through WLAN hotspots. Currently, the bandwidth offered by an IEEE 802.11 WLAN cannot afford many simultaneous real-time video accesses. A possible way to increase the offered bandwidth in a hotspot is the use of multiple access points (APs). However, a mobile station is usually connected to the WLAN AP with the strongest received signal strength indicator (RSSI). The total consumed bandwidth cannot be fairly allocated among those APs. In this paper, we will propose an effective load-balancing scheme via the support of the IAPP and SNMP in APs. The proposed scheme is an open solution and doesn-t need any changes in both wireless stations and APs. This makes load balancing possible in WLAN hotspots, where a variety of heterogeneous mobile devices are employed.Keywords: Wireless LAN, Load balancing, IAPP, SNMP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17751323 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.
Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26021322 Change of the Thermal Conductivity of Polystyrene Insulation in term of Temperature at the Mid Thickness of the Insulation Material: Impact on the Cooling Load
Authors: M. Khoukhi
Abstract:
Accurate prediction of the cooling/heating load and consequently, the sizing of the heating, ventilating, and air-conditioning equipment require precise calculation of the heat transfer mainly by conduction through envelope components of a building. The thermal resistance of most thermal insulation materials depends on the operating temperature. The temperature to which the insulation materials are exposed varies, depending on the thermal resistance of the materials, the location of the insulation layer within the assembly system, and the effective temperature which depends on the amount of solar radiation received on the surface of the assembly. The main objective of this paper is to investigate the change of the thermal conductivity of polystyrene insulation material in terms of the temperature at the mid-thickness of the material and its effect on the cooling load required by the building.
Keywords: Operating temperature, polystyrene insulation, thermal conductivity, cooling load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25311321 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.
Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8331320 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing
Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai
Abstract:
Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil.
Keywords: Journal bearing, TiO2 nanoparticles, viscosity model, Reynolds equation, load carrying capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31331319 Steady-State Performance of a New Model for UPFC Applied to Multi-Machines System with Nonlinear Load
Authors: S.Ali Al-Mawsawi
Abstract:
In this paper, a new developed construction model of the UPFC is proposed. The construction of this model consists of one shunt compensation block and two series compensation blocks. In this case, the UPFC with the new construction model will be investigated when it is installed in multi-machine systems with nonlinear load model. In addition, the steady–state performance of the new model operating as impedance compensation will be presented and compared with that obtained from the system without compensation.Keywords: UPFC, PWM, Nonlinear load, Multi-Machines system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231318 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18541317 Using TRACE, PARCS, and SNAP Codes to Analyze the Load Rejection Transient of ABWR
Authors: J. R. Wang, H. C. Chang, A. L. Ho, J. H. Yang, S. W. Chen, C. Shih
Abstract:
The purpose of the study is to analyze the load rejection transient of ABWR by using TRACE, PARCS, and SNAP codes. This study has some steps. First, using TRACE, PARCS, and SNAP codes establish the model of ABWR. Second, the key parameters are identified to refine the TRACE/PARCS/SNAP model further in the frame of a steady state analysis. Third, the TRACE/PARCS/SNAP model is used to perform the load rejection transient analysis. Finally, the FSAR data are used to compare with the analysis results. The results of TRACE/PARCS are consistent with the FSAR data for the important parameters. It indicates that the TRACE/PARCS/SNAP model of ABWR has a good accuracy in the load rejection transient.
Keywords: ABWR, TRACE, PARCS, SNAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8251316 An Experimental Study on Behavior of Transverse Connection Appropriate for Modular Girder Bridge
Authors: Dong-Hyun Kim, Jin-Woong Choi, Hyeong-Yeol Kim, Sun-Kyu Park
Abstract:
This study is to evaluate the behavior of integral and segmental specimens through static and cyclic tests. Integral specimens were made with the same size to be compared with segmental specimens that were made by connected precast members. To evaluate its bending performance and serviceability, 1 integral and 3 segmental specimens were tested under static load. And 1 integral and 2 segmental specimens were tested under cyclic load, respectively. Different load ranges were considered in the cyclic tests to evaluate the safety and serviceability. The test results showed that under static loading, segmental specimens had about 94% of the integral specimen's maximum moment, averagely. Under cyclic loading, the segmental specimens showed that had enough safety in the range of higher than service load and enough serviceability. In conclusion, the maximum crack width (0.16mm) satisfied the allowable crack width (0.30mm) in the range of service load.Keywords: Modular bridge, Transverse connection, Precast concrete, Static and cyclic test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531315 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators
Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino
Abstract:
In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.Keywords: Base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13331314 Internal Loading Distribution in Statically Loaded Ball Bearings, Subjected to a Combined Radial and Thrust Load, Including the Effects of Temperature and Fit
Authors: Mário C. Ricci
Abstract:
A new, rapidly convergent, numerical procedure for internal loading distribution computation in statically loaded, singlerow, angular-contact ball bearings, subjected to a known combined radial and thrust load, which must be applied so that to avoid tilting between inner and outer rings, is used to find the load distribution differences between a loaded unfitted bearing at room temperature, and the same loaded bearing with interference fits that might experience radial temperature gradients between inner and outer rings. For each step of the procedure it is required the iterative solution of Z + 2 simultaneous nonlinear equations – where Z is the number of the balls – to yield exact solution for axial and radial deflections, and contact angles.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method, Temperature, Fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861313 Load Transfer Mechanism Based Unified Strut-and-Tie Modeling for Design of Concrete Beams
Authors: Ahmed, M., Yasser A., Mahmoud H., Ahmed, A., Abdulla M. S., Nazar, S.
Abstract:
Strut-and-Tie Models (STM) for the design of concrete beams, comprising of struts, ties, nodes as the basic tools, is conceptually simple, but its realization for complex concrete structure is not straightforward and depends on flow of internal forces in the structure. STM technique has won wide acceptance for deep member and shear design. STM technique is a unified approach that considers all load effects (bending, axial, shear, and torsion) simultaneously, not just applicable to shear loading only. The present study is to portray Strut-and-Tie Modeling based on Load-Transfer-Mechanisms as a unified method to analyze, design and detailing for deep and slender concrete beams. Three shear span- effective depth ratio (a/ d) are recommended for the modeling of STM elements corresponding to dominant load paths. The study also discusses the research work conduct on effective stress of concrete, tie end anchorage, and transverse reinforcement demand under different load transfer mechanism. It is also highlighted that to make the STM versatile tool for design of beams applicable to all shear spans, the effective stress of concrete and, transverse reinforcement demand, inclined angle of strut, and anchorage requirements of tie bars is required to be correlated with respect to load transfer mechanism. The country code provisions are to be modified and updated to apply for generalized design of concrete deep and slender member using load transfer mechanism based STM technique. Examples available in literature are reanalyzed with refined STM based on load transfer mechanisms and results are compared. It is concluded from the results that proposed approach will require true reinforcement demand depending on dominant force transfer action in concrete beam.
Keywords: Deep member, Load transfer mechanism, Strut-and-Tie Model, Strut, Truss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5985