
 

Qualitative Parametric Comparison of Load 
Balancing Algorithms in Parallel and Distributed 

Computing Environment 
 

Amit Chhabra, Gurvinder Singh, Sandeep Singh Waraich, Bhavneet Sidhu, and Gaurav Kumar 

 

 
 
Abstract—Decrease in hardware costs and advances in computer 

networking technologies have led to increased interest in the use of 
large-scale parallel and distributed computing systems. One of the 
biggest issues in such systems is the development of effective 
techniques/algorithms for the distribution of the processes/load of a 
parallel program on multiple hosts to achieve goal(s) such as 
minimizing execution time, minimizing communication delays, 
maximizing resource utilization and maximizing throughput. 
Substantive research using queuing analysis and assuming job 
arrivals following a Poisson pattern, have shown that in a multi-host 
system the probability of one of the hosts being idle while other host 
has multiple jobs queued up can be very high. Such imbalances in 
system load suggest that performance can be improved by either 
transferring jobs from the currently heavily loaded hosts to the lightly 
loaded ones or distributing load evenly/fairly among the hosts .The 
algorithms known as load balancing algorithms, helps to achieve the 
above said goal(s). These algorithms come into two basic categories - 
static and dynamic. Whereas static load balancing algorithms (SLB) 
take decisions regarding assignment of tasks to processors based on 
the average estimated values of process execution times and 
communication delays at compile time, Dynamic load balancing 
algorithms (DLB) are adaptive to changing situations and take 
decisions at run time.  

The objective of this paper work is to identify qualitative 
parameters for the comparison of above said algorithms. In future this 
work can be extended to develop an experimental environment to 
study these Load balancing algorithms based on comparative 
parameters quantitatively.  
 

Keywords—SLB, DLB, Host, Algorithm and Load. 
 

I.  INTRODUCTION TO PARALLEL AND DISTRIBUTED 
COMPUTING 

HE advents in the today’s micro-electronic technology 
have resulted in the availability of fast, inexpensive 

processors and advancement in the communication technology 
has resulted in the availability of cost-effective and highly 
efficient computer networks. The net result of the 
advancement in these two technologies is that the 
price/performance ratio has now changed to favor the use of 
interconnected, multiple hosts instead of single high-speed 
 

 
Manuscript received on 20 May 2006. 
All authors are with Department of Computer Science & Engineering, 

Guru Nanak Dev University, Amritsar, India (e-mails: 
chhabra_amit78@yahoo.com, gsbawa71@yahoo.com, 
sandeepwraich@yahoo.com, bhavneet_sidhu@yahoo.co.in, 
gauravk6in@yahoo.com). 

 
processor. These interconnected multiple hosts either loosely 
or tightly coupled constitutes distributed and parallel 
computing environment respectively.               

Some of the major benefits of parallel computing systems 
are information sharing among distributed users, resource 
sharing, better price/performance ratio, shorter response time, 
higher throughput, higher reliability, extensibility and 
incremental growth. 
 

II.  LOAD BALANCING ALGORITHMS 
Load balancing on multi computers is a challenge due to the 

autonomy of the processors and the interprocessor 
communication overhead incurred in the collection of state 
information, communication delays, redistribution of load etc. 
Parallel and distributed computing environment is inherently 
best choice for solving/running distributed and parallel 
program applications. In such type of applications, a large 
process/task is divided and then distributed among multiple 
hosts for parallel computation. [5] Has pointed out that in a 
system of multiple hosts the probability of one of the hosts 
being idle while other host has multiple jobs queued up can be 
very high. Here load balancing is likely to improve 
performance Such imbalances in system load suggest that 
performance can be improved by either transferring jobs from 
the currently heavily loaded hosts to the lightly loaded ones or 
distributing load evenly/fairly among the hosts .The 
algorithms known as load balancing algorithms, helps to 
achieve the above said goal(s).                

The processors are categorized according to workload in 
their CPU queues as heavily loaded (more tasks are waiting to 
be executed), lightly loaded (less tasks are waiting to be 
executed in CPU queue) and idle processors/hosts (having no 
pending work for execution). Here CPU queue length is used 
as an indicator of workload at a particular processor. Some 
others workload indicators (also known as load index) have 
been suggested by researchers. But none of them is found to 
be an idle one. . 

Substantial work has been done on load balancing in the 
past years, taking on a variety of forms. The general problem 
may be studied in different types of computing environments, 
using different strategies and at different levels. The system 
may be loosely coupled, with a number of functionally 
complete computers connected by one or more networks 
through which messages may be transmitted and remote 
resources accessed, or may be a tightly coupled, with several 
CPU-memory combinations connected by a bus to shared 

T 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008 

1292International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

73
7.

pd
f



memory and secondary storage. The resources to be shared 
may be of the same type and capacity (homogeneous system), 
or of different type and/or capacities (heterogeneous system). 
The algorithms used for load balancing may require no 
information, or only information about individual jobs (static 
algorithm) or may make decisions based on the current load 
situation (dynamic algorithm). The transfer of a job may be 
initiated by the originating host (source-initiative algorithm), 
or by the target host (server-initiative algorithm). The unit of 
execution that is to transferred/redistributed may range from 
complete jobs submitted by the users, or individual processes, 
or even smaller program modules. The units may also be the 
components of parallel computations with specific 
communication requirements. Finally, the transfer of a job 
may be restricted to be done prior to the start of its execution 
(initial job placement), or may also be allowed during   its 
execution (process migration).  

However scope of this paper is limited to identify 
qualitative parameters for comparison of both forms of load 
balancing algorithms (static and dynamic) in both parallel and 
distributed computing system with tightly and loosely coupled 
environment respectively and assuming resources to be shared 
are homogeneous ones. It is also assumed that preemptive 
process migration is possible. 

The algorithm adopted for load balancing is closely related 
to the type and amount of load and job information assumed to 
be known to the decision-making modules. Accordingly these 
algorithms come into two basic categories - static and 
dynamic. 
 

A.  Static Load Balancing Algorithms (SLB) 
In these types of algorithms, no dynamic load information is 

used, the assignments of the jobs to the processing hosts are 
made a priori using job information (e.g. arrival time, average 
execution time, amount of resources needed and their inter-
process communication requirements), or probabilistically. 
However in reality this whole information may not be known 
a priori (at compile time) and things will get worse if we work 
in heterogeneous systems where job execution times on 
processing nodes will vary according to capacity of hosts. 
System administrators have attempted static balancing of 
workloads with user accounts for a long time. User accounts 
are assigned to the available machines in such a way that the 
workload generated by the users is balanced in the long run. 
Such a method is simple and potentially effective, but is 
severely limited by administrative considerations (e.g., 
students in one class need to be assigned to the same machine) 
and often in situations in which some of the machines is 
heavily congested, while others stay almost idle. Periodic 
reassignment of the user accounts may also be necessary as 
the user demand change. 

Static load balancing can be classified into two categories –
optimal and sub-optimal. 
 

1.  Optimal SLB  
When all the information regarding the state of the system 

as well as the resource needs is known an optimal assignment 
can be made based on some criterion function. Examples of 
optimization measures are minimizing total process 
completion time, maximizing utilization of resources in the 

system, or maximizing system throughput. For example 
simulated Annealing (SA) and genetic algorithms (GA’s) are 
optimization techniques 
 

2.  Sub-Optimal SLB 
When for some of computations, optimal solution does not 

exist then sub-optimal methods can be applied. These methods 
rely on the rules-of-thumb and heuristics to guide a scheduling 
process. List scheduling is the most popular technique despite 
of poor performance in high communication delay situations. 

Lot of static algorithms, taking into account their optimal 
and sub-optimal nature, has been suggested by researchers so 
far. This includes approximate algorithms like Solution space 
enumeration and search, Graph theoretic approach [6][7], 
Mathematical programming and queuing theoretic. Some other 
are round-robin algorithm, recursive-bisection algorithm, 
heuristic algorithms and randomized algorithms.   
 

B.  Dynamic Load Balancing Algorithms (DLB) 
The main problem with SLB algorithms was that they 

assume too much job information which may not be known in 
advance even if it is available, intensive computation may be 
involved in obtaining the optimal schedule. Because of this 
drawback much of the interest in load balancing research has 
shifted to DLB algorithms that consider the current load 
conditions (i.e. at execution time) in making job transfer 
decisions. So here the workload is not assigned statically to 
the processing hosts as was being done in SLB but instead of 
this workload can be redistributed among hosts at the runtime 
as the circumstances changes i.e. transferring the tasks from 
heavily loaded processors to the lightly loaded ones.  

Dynamic load balancers continually monitor the load on all 
the processors, and when the load imbalance reaches some 
predefined level, this redistribution of work takes place. But as 
this monitoring steals CPU cycles so care must taken as when 
it should be invoked. This redistribution does incur extra 
overhead at execution time.  
 
A DLB algorithm considers following issues:  
 
(1) Load estimation policy, which determines how to 
estimate the workload of a particular node of the system.  
(2) Process transfer policy, which determines whether to 
execute a process locally or remotely.  
(3) State information exchange policy, which determines 
how to exchange the system load information among the 
nodes.  
(4) Priority assignment policy, which determines the priority 
of execution of local and remote processes at a particular 
node.  
(5) Migration limiting policy, which determines the total 
number of times a process, can migrate from one node to 
another. 
 

A large number of algorithms have been proposed, mostly 
heuristic in nature, as the optimal solution often requires 
future knowledge and is computationally intensive. The most 
widely approach for studying DLB algorithms is analytic 
modeling and simulation. For analytic modeling, the computer 
system is modeled as a queuing network with job arrivals and 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008 

1293International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

73
7.

pd
f



their resource consumptions following certain probabilistic 
patterns. Queuing network solution techniques are used to 
compute performance measures [1] [2] [3] [8]. Due to 
limitations of the solution techniques, simulation is often 
resorted to for approximate solutions [4] [5]. Some of the 
source-initiated DLB algorithms are by Eager [2] [3][4]. 

After studying various static and dynamic load-balancing 
algorithms, now it’s time to identify several qualitative 
parameters for comparative study. 
 

III.  IDENTIFICATION OF COMPARATIVE PARAMETERS 
 

1.  Nature  
This factor is related with determining the nature or 

behavior of load balancing algorithms, that is whether the 
algorithm is of static or dynamic nature, pre-planned or no 
planning.  

SLB algorithms are of static and planned nature as tasks are 
assigned statically i.e. at compile time in a planned manner at 
compile time to processors and there will be no redistribution 
of tasks takes place afterwards and outcome of the algorithm 
is deterministic as much of the job information is known a 
priori. 

DLB algorithms are of dynamic and no-planning nature as 
tasks are assigned at run-time to processors and tasks 
redistribution can take place if task assignment that was earlier 
done is not giving good performance (that is if proper 
balancing of load is not there). So their behavior is totally non-
deterministic and no initial planning is done for assigning load 
to hosts as this work is done at run-time.  
  

2.  Overhead Associated   
This factor is related with determining the amount of 

overhead involved while implementing a load-balancing 
algorithm. It is composed of overhead due to movement 
(relocation) of tasks, inter-processor communication, and 
inter-process communication. 

SLB algorithms incurs lesser overhead as once tasks are 
assigned to processors, no redistribution of tasks takes place, 
so no relocation overhead. 

DLB algorithms incur more overhead relatively as 
relocation of tasks takes place here. 
 

3.  Resource Utilization  
This factor is used to check the resource utilization. 

SLB algorithms have lesser resource utilization as static load 
balancing methods just tries to assign tasks to processors in 
order to achieve minimize response time ignoring the fact that 
may be using this task assignment can result into a situation in 
which some processors finish their work early and sit idle due 
to lack of work. 
DLB algorithms have relatively better resource utilization as 
dynamic load balancing take care of the fact that load should 
be equally distributed to processors so that no processors 
should sit idle. 
 

4.  Processor Thrashing   
Processor thrashing occurs when most of the processors of 

the system are spending most of their time migrating processes 

without accomplishing any useful work in an attempt to 
properly schedule the processes for better performance. 

SLB algorithms are free from Processor thrashing as no 
relocation of tasks place. 

DLB algorithms incurs substantial processor thrashing. 
 

5.  Preemptiveness  
This factor is related with checking the fact that whether 

tasks in execution can be transferred to other nodes 
(processors) or not. 

SLB algorithms are inherently non-preemptive as no tasks 
are relocated. 

DLB algorithms are both preemptive and non preemptive. 
 

6.  Predictability  
This factor is related with the deterministic or non-

deterministic factor that is to predict the outcome of the 
algorithm. 

SLB algorithm’s behavior is predictable as most of the 
things like average execution time of processes and workload 
assignment to processors are fixed at compile-time. 

DLB algorithm’s behavior is unpredictable, as everything 
has been done at run time. 
 

7.  Adaptability 
This factor is used to check whether the algorithm is 

adaptive to varying or changing situations i.e. situations which 
are of dynamic nature. 

SLB algorithms are not adaptive towards all circumstances 
as this method fails in dynamic or varying nature problems i.e. 
situation in which number of processes are not fixed, also in 
situations which may require indeterminate steps towards 
solution. DLB algorithms are adaptive towards every situation 
whether numbers of processes are fixed or varying one. 
 

8.  Reliability 
Which algorithm is more reliable in case of some host 

failure occurs. 
SLB algorithms are less reliable because no task/process 

will be relocated / transferred to another host in case a node 
fails at run-time. 

DLB algorithms are relatively more reliable as here 
processes can be transferred to other nodes in case of failure of 
node occurs. 
 

9.  Response Time  
How much time a distributed system using a particular load 

balancing algorithm is taking to respond? 
SLB algorithms have shorter response time as one should 

not forget that in SLB there is lesser overhead as discussed 
earlier so emphasis is totally on executing jobs in shorter time 
rather than optimally utilizing the available resources. 

DLB algorithms may have relatively higher response time 
as sometimes redistribution of processes takes place. Some 
time is being consumed during task migration 
 

10.  Stability  
Stability can be related to the exchange of present workload 

state information among processors. 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008 

1294International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

73
7.

pd
f



SLB algorithms in this context can be considered as stable 
as no information regarding present workload state is passed 
among processors. 

However in case of DLB such kind of information is 
exchanged among processors and if this information is out of 
date i.e. information which is not updated regularly or 
periodically among processors then it can lead the whole 
system to an unstable state.   
 

11.  Issues  
Considering other major issues related with load balancing 

algorithms. 
SLB algorithms-The major issue in static load balancing is 

to accurately determining the process execution times, 
communication delays and other resource needs of a processor 
a priori. A prior accurate estimation is not possible in reality, 
so emphasis can be done on to estimation of such quantities 
close to accurate value. 

DLB algorithms- The major issue concerning DLB 
algorithms is to develop fast methods for distributed 
termination detection and to develop techniques of reducing 
overhead which includes inter processor communication 
overhead and task migration overhead, which is main problem 
in dynamic load balancing. 
 

IV.  COMPARISON  
This comparison work in tabular form is shown below. 

        
TABLE I 

SHOWING COMPARISON WORK 
        Load  
          balancing 
    
Parameters 

SLB 
Algorithms 

DLB 
Algorithms 

1.Nature  Static i.e. 
workload is 
assigned at 
compile time 

Dynamic i.e. 
workload is assigned 
at run time 

2.Associated 
overhead 

Lesser overhead More overhead 

3.Resource 
Utilization 

Lesser 
Utilization 

More Utilization 

4.Processor 
Thrashing 

No Thrashing Substantial Thrashing 

5.Preemptiveness Non-preemptive Preemptive and Non-
preemptive 

6.Predictability More 
Predictable 

Lesser predictable 

7.Adaptability Less adaptive More Adaptive 
8.Reliability Less  More 
9.Response Time Less More 
10.Stability More Less 
11.Other Issues Determining 

process 
execution time 
at run time 

Developing 
techniques to reduce 
communication 
overhead 

V. CONCLUSION AND FUTURE DIRECTIONS 
Use of load balancing algorithms is totally dependent upon 

underlying situations if process execution times and inter 
processor communication time can be estimated a priori i.e. at 
compile time which is practically difficult then Static Load 
balancing algorithms should be employed otherwise dynamic 
load balancing algorithms should be used. The purpose of this 
paper was to compare these load balancing algorithms based 
on identified qualitative parameters.  
 

REFERENCES   
[1] Y.C. Chow and W. Kohler, "Models for Dynamic Load Balancing in a 

Heterogeneous Mu1tiiple Processor System," IEEE Transactions on 
Computers, Vol. C-28, pp. 334-361, May 1979.  

[2] D L Eager, E D Lazowska , J Zahorjan, “A comparison of receiver-
initiated and sender-initiated adaptive load sharing”, Performance 
Evaluation, v.6 n.1, p.53-68, March 1986.  

[3] Derek L. Eager, Edward D. Lazowska , John Zahorjan, “Adaptive load 
sharing in homogeneous distributed systems”, IEEE Transactions on 
Software Engineering, v.12 n.5, p.662-675, May 1986. 

[4] C.H.Hsu and J.W.Liu "Dynamic Load Balancing Algorithms in 
Homogeneous Distributed System," Proceedings of The 6th 
International Conference on Distributed Computing Systems, May, 
1986, pp. 216-223. 

[5]  Miron Livny, Myron Melman, “Load balancing in homogeneous 
broadcast distributed systems”, Proceedings of the Computer Network 
Performance Symposium, p.47-55, April 13-14, 1982, College Park, 
Maryland, United States.  

[6] H.S. Stone. “Multiprocessor scheduling with the aid of network flow 
algorithms”. IEEE Trans of Software Engineering, SE-3(1):95--93, 
January 1977.  

[7] H.S. Stone, “Critical Load Factors in Two-Processor Distributed 
Systems,” IEEE Trans. Software Eng., vol. 4, no. 3, May 1978. 

[8] Y.Wang and R. Morris, "Load balancing in distributed systems," IEEE 
Trans. Computing. C-34, no. 3, pp. 204-217, Mar. 1985. 

 
 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008 

1295International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

73
7.

pd
f




