Search results for: Batch fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 336

Search results for: Batch fermentation

246 Principle Components Updates via Matrix Perturbations

Authors: Aiman Elragig, Hanan Dreiwi, Dung Ly, Idriss Elmabrook

Abstract:

This paper highlights a new approach to look at online principle components analysis (OPCA). Given a data matrix X R,^m x n we characterise the online updates of its covariance as a matrix perturbation problem. Up to the principle components, it turns out that online updates of the batch PCA can be captured by symmetric matrix perturbation of the batch covariance matrix. We have shown that as n→ n0 >> 1, the batch covariance and its update become almost similar. Finally, utilize our new setup of online updates to find a bound on the angle distance of the principle components of X and its update.

Keywords: Online data updates, covariance matrix, online principle component analysis (OPCA), matrix perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
245 Cell Growth and Metabolites Produced by Fluorescent Pseudomonad R62 in Modified Chemically Defined Medium

Authors: K. Saharan, M.V. R. K. Sarma, A. S. Roesti, A. Prakash, B. N. Johri, M. Aragno, V. S. Bisaria, V. Sahai

Abstract:

Chemically defined Schlegel-s medium was modified to improve production of cell growth and other metabolites that are produced by fluorescent pseudomonad R62 strain. The modified medium does not require pH control as pH changes are kept within ± 0.2 units of the initial pH 7.1 during fermentation. The siderophore production was optimized for the fluorescent pseudomonad strain in the modified medium containing 1% glycerol as a major carbon source supplemented with 0.05% succinic acid and 0.5% Ltryptophan. Indole-3 acetic acid (IAA) production was higher when L-tryptophan was used at 0.5%. The 2,4- diacetylphloroglucinol (DAPG) was higher with amended three trace elements in medium. The optimized medium produced 2.28 g/l of dry cell mass and 900 mg/l of siderophore at the end of 36 h cultivation, while the production levels of IAA and DAPG were 65 mg/l and 81 mg/l respectively at the end of 48 h cultivation.

Keywords: Fluorescent pseudomonad, Fermentation, Metabolites production, PGPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
244 Nutritional Evaluation of Sorghum Flour (Sorghumbicolor L. Moench) During Processing of Injera

Authors: Noha A. Mohammed, Isam A. Mohamed Ahmed, Elfadil E. Babiker

Abstract:

The present study was carried out to evaluate the nutritional value of sorghum flour during processing of injera (unleavened thick bread). The proximate composition of sorghum flour before and after fermentation and that of injera was determined. Compared to the raw flour and fermented one, injera had low protein (11.55%), ash (1.57%) and fat (2.40%) contents but high in fiber content. Moreover, injera was found to have significantly (P ≤ 0.05) higher energy (389.08 Kcal/100g) compared to raw and fermented sorghum flour. Injera contained lower levels of anti-nutritional factors (polyphenols, phytate and tannins) compared to raw and fermented sorghum. Also it was found to be rich in Ca (4.75mg/100g), Fe (3.95 mg/100g), and Cu (0.7 mg/100g) compared to that of raw and fermented flour. Moreover, both the extractable minerals and protein digestibility were high for injera due to low amount of anti-nutrients. Injera was found to contain an appreciable amount of amino acids except arginine and tyrosine.

Keywords: Cooking, Fermentation, Malt, Protein fractions, Sorghum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4111
243 Production of 3-Methyl-1-Butanol by Yeast Wild Strain

Authors: R. Nor Azah, A. R. Roshanida, N. Norzita

Abstract:

The biomass-based fuels have become great concern in order to replace the petroleum-based fuels. Biofuels are a wide range of fuels referred to liquid, gas and solid fuels produced from biomass. Recently, higher chain alcohols such as 3-methyl-1-butanol and isobutanol have become a better candidate compared to bioethanol in order to replace gasoline as transportation fuel. Therefore, in this study, 3-methyl-1-butanol was produced through a fermentation process by yeast. Several types of yeast involved in this research including Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris (KM71H, GS115 and X33). The result obtained showed that K. lactis GG799 gave the highest concentration of 3-methyl-1-butanol at 274 mg/l followed by S. cerevisiae, P. pastoris GS115, P. pastoris KM71H and P. pastoris X33 at 265 mg/l, 190 mg/l, 182 mg/l and 174 mg/l respectively. Based on the result, it proved that yeast have a potential in producing 3-methyl-1-butanol naturally.

Keywords: Biofuel, fermentation, 3-methyl-1-butanol, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
242 Isolation and Screening of Laccase Producing Basidiomycetes via Submerged Fermentations

Authors: Mun Yee Chan, Sin Ming Goh, Lisa Gaik Ai Ong

Abstract:

Approximately 10,000 different types of dyes and pigments are being used in various industrial applications yearly, which include the textile and printing industries. However, these dyes are difficult to degrade naturally once they enter the aquatic system. Their high persistency in natural environment poses a potential health hazard to all form of life. Hence, there is a need for alternative dye removal strategy in the environment via bioremediation. In this study, fungi laccase is investigated via commercial agar dyes plates and submerged fermentation to explore the application of fungi laccase in textile dye wastewater treatment. Two locally isolated basidiomycetes were screened for laccase activity using media added with commercial dyes such as 2, 2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), guaiacol and Remazol Brillant Blue R (RBBR). Isolate TBB3 (1.70±0.06) and EL2 (1.78±0.08) gave the highest results for ABTS plates with the appearance of greenish halo on around the isolates. Submerged fermentation performed on Isolate TBB3 with the productivity 3.9067 U/ml/day, whereas the laccase activity for Isolate EL2 was much lower (0.2097 U/ml/day). As isolate TBB3 showed higher laccase production, it was subjected to molecular characterization by DNA isolation, PCR amplification and sequencing of ITS region of nuclear ribosomal DNA. After being compared with other sequences in National Center for Biotechnology Information (NCBI database), isolate TBB3 is probably from species Trametes hirsutei. Further research work can be performed on this isolate by upscale the production of laccase in order to meet the demands of the requirement for higher enzyme titer for the bioremediation of textile dyes.

Keywords: Bioremediation, dyes, fermentation, laccase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
241 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network

Authors: Magdi M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
240 Batch-Oriented Setting Time Optimisation in an Aerodynamic Feeding System

Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis

Abstract:

The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. This system has been enabled to adjust itself by using a genetic algorithm. The longer this genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.

Keywords: Aerodynamic feeding system, batch size, optimisation, setting time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
239 Cyanide and Heavy Metal Concentration of Fermented Cassava Flour (Lafun) Available in the Markets of Ogun and Oyo States of Nigeria

Authors: Adebayo-Oyetoro A. O., Oyewole O. B., Obadina A. O, Omemu M. A.

Abstract:

Fermented cassava flours (lafun) sold in Ogun and Oyo States of Nigeria were collected from 10 markets for a period of two months and analysed to determine their safety status. The presence of trace metals was due to high vehicular movement around the drying sites and markets. Cyanide and moisture contents of samples were also determined to assess the adequacy of fermentation and drying. The result showed that sample OWO was found to have the highest amount of 16.02±0.12mg/kg cyanide while the lowest was found in sample OJO with 10.51±0.10mg/kg. The results also indicated that sample TVE had the highest moisture content of 18.50±0.20% while sample OWO had the lowest amount of 12.46±0.47%. Copper and lead levels were found to be highest in TVE with values 28.10mg/kg and 1.1mg/kg respectively, while sample BTS had the lowest values of 20.6mg/kg and 0.05mg/kg respectively. High value of cyanide indicated inadequate fermentation.

Keywords: Cyanide, fermented, heavy metal, lafun.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
238 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation

Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono

Abstract:

The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.

Keywords: Activated carbon, adsorption, equilibrium, kinetic, Pb2+, mangrove propagule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
237 Formosa3: A Cloud-Enabled HPC Cluster in NCHC

Authors: Chin-Hung Li, Te-Ming Chen, Ying-Chuan Chen, Shuen-Tai Wang

Abstract:

This paper proposes a new approach to offer a private cloud service in HPC clusters. In particular, our approach relies on automatically scheduling users- customized environment request as a normal job in batch system. After finishing virtualization request jobs, those guest operating systems will dismiss so that compute nodes will be released again for computing. We present initial work on the innovative integration of HPC batch system and virtualization tools that aims at coexistence such that they suffice for meeting the minimizing interference required by a traditional HPC cluster. Given the design of initial infrastructure, the proposed effort has the potential to positively impact on synergy model. The results from the experiment concluded that goal for provisioning customized cluster environment indeed can be fulfilled by using virtual machines, and efficiency can be improved with proper setup and arrangements.

Keywords: Cloud Computing, HPC Cluster, Private Cloud, Virtualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
236 The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia

Authors: Eka Sari, Siti Syamsiah, Hary Sulistyo, Muslikhin

Abstract:

Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x

Keywords: Biodegradation, lignin, PhanerochaeteChrysosporium, SSF, Water Hyacinth, Bioethanol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
235 Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Authors: Ashish Pathak, Dong-Jin Kim, Haragobinda Srichandan, Byoung-Gon Kim

Abstract:

Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. 

Keywords: At. ferrooxidans, Batch reactor, Coal desulfurization, Pyrite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
234 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: Convolutional Neural Network, Deep Learning, Deep Learning Based FER, Facial Emotion Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
233 Regulatory Effects of Carbon Sources on Tabtoxin Production (A β-lactam Phytotoxin of Pseudomonas syringae pv. tabaci)

Authors: N. Messaadia, D. Harzallah

Abstract:

The effects of divers carbon substrates were investigated for the tabtoxin production of an isolated pathogenic Pseudomonas syringae pv. tabaci, the causal agent of wildfire of tobacco and are discussed in relation to the bacterium growth. The isolated organism was grown in batch culture on Woolley's medium (28°C, 200 rpm, during 5 days). The growth has been measured by the optical density (OD) at 620 nm and the tabtoxin production quantified by Escherichia coli (K-12) bioassay technique. The growth and the tabtoxin production were both influenced by the substrates (sugars, amino acids, organic acids) used, each, as a sole carbon source and as a supplement for the same amino acids. The most significant quantities of tabtoxin were obtained in presence of some amino acids used as sole carbon source and/or as supplement.

Keywords: Amino acid supplement, carbon substrates, batch culture, Pseudomonas syringae pv. tabaci.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3575
232 The Effects of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture

Authors: F. Ardestani, S.A. Fatemi, B. Yakhchali, M. Hosseyni, G. Najafpour

Abstract:

Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production.

Keywords: Penicillium bervicompactum, Methionine, Mycophenolic acid, Submerged culture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
231 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
230 Screening of Process Variables for the Production of Extracellular Lipase from Palm Oil by Trichoderma Viride using Plackett-Burman Design

Authors: R. Rajendiran, S. Gayathri devi, B.T. SureshKumar, V. Arul Priya

Abstract:

Plackett-Burman statistical screening of media constituents and operational conditions for extracellular lipase production from isolate Trichoderma viride has been carried out in submerged fermentation. This statistical design is used in the early stages of experimentation to screen out unimportant factors from a large number of possible factors. This design involves screening of up to 'n-1' variables in just 'n' number of experiments. Regression coefficients and t-values were calculated by subjecting the experimental data to statistical analysis using Minitab version 15. The effects of nine process variables were studied in twelve experimental trials. Maximum lipase activity of 7.83 μmol /ml /min was obtained in the 6th trail. Pareto chart illustrates the order of significance of the variables affecting the lipase production. The present study concludes that the most significant variables affecting lipase production were found to be palm oil, yeast extract, K2HPO4, MgSO4 and CaCl2.

Keywords: lipase, submerged fermentation, statistical optimization, Trichoderma viride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
229 Biogas Yield Potential Research of Tithonia diversifolia in Mesophilic Anaerobic Fermentation in China

Authors: Duan Huanyun, Xu Rui, Li Jianchang, Yuan Yage, Wang Qiuxia, Nomana Intekhab Hadi

Abstract:

BioEnergy is an archetypal appropriate technology and alternate source of energy in rural areas of China, and can meet the basic need for cooking fuel in rural areas. The paper introduces with an alternate mean of research that can accelerate the biogas energy production. Tithonia diversifolia or the Tree marigold can be hailed as mesophillic anaerobic digestion to increase the production of more Bioenergy. Tithonia diversifolia is very native to Mexico and Central America, which can be served as ornamental plants- green manure and can prevent soil erosion. Tithonia diversifolia is widely grown and known to Asia, Africa, America and Australia as well. Nowadays, Considering China’s geographical condition it is found that Tithonia diversifolia is widely growing plant in the many tropical and subtropical regions of southern Yunnan- which can have great usage in accelerating and increasing the Bioenergy production technology. The paper discussed aiming at proving possibility that Tithonia diversifolia can be applied in biogas fermentation and its biogas production potential, the research carried experiment on Tithonia diversifolia biogas fermentation under the mesophilic condition (35 Celsius Degree). The result revealed that Tithonia diversifolia can be used as biogas fermentative material, and 6% concentration can get the best biogas production, with the TS biogas production rate 656mL/g and VS biogas production rate 801mL/g. It is well addressed that Tithonia diversifolia grows wildly in 53 Counties and 9 cities of Yunnan Province, which mainly grows in form of the road side plants, the edge of the field, countryside, forest edge, open space; of which demersum-natures can form dense monospecific beds -causing serious harm to agricultural production landforms threatening the ecological system as a potentially harmful exotic plant. There are also found the three types of invasive daisy alien plants -Eupatorium adenophorum, Eupatorium Odorata and Tithonia diversifolia in Yunnan Province of China-among them the Tithonia diversifolia is responsible for causing serious harm to agricultural production. In this paper we have designed the experimental explanation of Biogas energy production that requires anaerobic environment and some microbes; Tithonia diversifolia plant has been taken into consideration while carrying experiments and with successful resulting of generating more BioEnergy emphasizing on the practical applications of Tithonia diversifolia. This paper aims at- to find a new mechanism to provide a more scientific basis for the development of this plant herbicides in Biogas energy and to improve the utilization throughout the world as well.

Keywords: Biogas Energy Production, Tithonia diversifolia, Energy Development, Ecological Agriculture, Eupatorium adenophorum, Eupatorium odorata, Anaerobic Fermentation, Biogas Production Potential, Mesopilic Fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
228 Comparative Study on Production of Fructooligosaccharides by p. Simplicissimum Using Immobilized Cells and Conventional Reactor System

Authors: Noraziah A. Y., Mashitah M. D., Subhash Bhatia

Abstract:

Fructooligosaccharides derived from microbial enzyme especially from fungal sources has been received particular attention due to its beneficial effects as prebiotics and mass production. However, fungal fermentation is always cumbersome due to its broth rheology problem that will eventually affect the production of FOS. This study investigated the efficiency of immobilized cell system using rotating fibrous bed bioreactor (RFBB) in producing fructooligosaccharides (FOS). A comparative picture with respect to conventional stirred tank bioreactor (CSTB) and RFBB has been presented. To demonstrate the effect of agitation intensity and aeration rate, a laboratory-scale bioreactor 2.5 L was operated in three phases (high, medium, low) for 48 hours. Agitation speed has a great influence on P. simplicissimum fermentation for FOS production, where the volumetric FOS productivity using RFBB is increased with almost 4 fold compared to the FOS productivity in CSTB that only 0.319 g/L/h. Rate of FOS production increased up to 1.2 fold when immobilized cells system was employed at aeration rate similar to the freely suspended cells at 2.0 vvm.

Keywords: Fructooligosaccharides, immobilized, productivity, prebiotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
227 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements

Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin

Abstract:

An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.

Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
226 Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of Hg (II) on Palm Shell Powder

Authors: Shilpi Kushwaha, Suparna Sodaye, P. Padmaja

Abstract:

Palm shell obtained from coastal part of southern India was studied for the removal for the adsorption of Hg (II) ions. Batch adsorption experiments were carried out as a function of pH, concentration of Hg (II) ions, time, temperature and adsorbent dose. Maximum removal was seen in the range pH 4.0- pH 7.0. The palm shell powder used as adsorbent was characterized for its surface area, SEM, PXRD, FTIR, ion exchange capacity, moisture content, and bulk density, soluble content in water and acid and pH. The experimental results were analyzed using Langmuir I, II, III, IV and Freundlich adsorption isotherms. The batch sorption kinetics was studied for the first order reversible reaction, pseudo first order; pseudo second order reaction and the intra-particle diffusion reaction. The biomass was successfully used for removal Hg (II) from synthetic and industrial effluents and the technique appears industrially applicable and viable.

Keywords: Biosorbent, mercury removal, borassus flabellifer, isotherms, kinetics, palm shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
225 The Effect of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture

Authors: Fatemeh Ardestani, Seyed Safa-ali Fatemi, Bagher Yakhchali, Seyed Morteza Hosseyni, Ghasem Najafpour

Abstract:

Mycophenolic acid “MPA" is a secondary metabolite of Penicillium bervicompactum with antibiotic and immunosuppressive properties. In this study, fermentation process was established for production of mycophenolic acid by Penicillium bervicompactum MUCL 19011 in shake flask. The maximum MPA production, product yield and productivity were 1.379 g/L, 18.6 mg/g glucose and 4.9 mg/L.h respectively. Glucose consumption, biomass and MPA production profiles were investigated during fermentation time. It was found that MPA production starts approximately after 180 hours and reaches to a maximum at 280 h. In the next step, the effects of methionine and acetate concentrations on MPA production were evaluated. Maximum MPA production, product yield and productivity (1.763 g/L, 23.8 mg/g glucose and 6.30 mg/L. h respectively) were obtained with using 2.5 g/L methionine in culture medium. Further addition of methionine had not more positive effect on MPA production. Finally, results showed that the addition of acetate to the culture medium had not any observable effect on MPA production

Keywords: Penicillium bervicompactum, Methionine, Mycophenolic acid, Submerged culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
224 Effect of COD Loading Rate on Hydrogen Production from Alcohol Wastewater

Authors: Patcharee Intanoo, Jittipan Chavadej, Sumaeth Chavadej

Abstract:

The objective of this study was to investigate hydrogen production from alcohol wastewater by anaerobic sequencing batch reactor (ASBR) under thermophillic operation. The ASBR unit used in this study had a liquid holding volume of 4 L and was operated at 6 cycles per day. The seed sludge taken from an upflow anaerobic sludge blanket unit treating the same wastewater was boiled at 95 °C for 15 min before being fed to the ASBR unit. The ASBR system was operated at different COD loading rates at a thermophillic temperature (55 °C), and controlled pH of 5.5. When the system was operated under optimum conditions (providing maximum hydrogen production performance) at a feed COD of 60 000 mg/l, and a COD loading rate of 68 kg/m3 d, the produced gas contained 43 % H2 content in the produced gas. Moreover, the hydrogen yield and the specific hydrogen production rate (SHPR) were 130 ml H2/g COD removed and 2100 ml H2/l d, respectively.

Keywords: Biohydrogen, Alcohol wastewater, Anaerobic sequencing batch reactor (ASBR), Thermophillic operation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
223 Micro-aerobic, Anaerobic and Two-stage Condition for Ethanol Production by enterobacter aerogenes from Biodiesel-derived Crude Glycerol

Authors: Kanokrat Saisaard, Irini Angelidaki, Poonsuk Prasertsan

Abstract:

The microbial production of ethanol from biodiesel¬derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic condition) exhibited higher ethanol production (24.5 g/L) than using one-stage fermentation (either micro-aerobic or anaerobic condition. The two- stage configuration, exhibited slightly higher crude glycerol consumption rate (1.81 g/L/h), as well as ethanol yield (0.56 g/g) than the one-stage configuration. Therefore, two-stage process was selected for ethanol production from E. aerogenes TISTR1468 in scale-up studies.

Keywords: crude glycerol, ethanol, micro-aerobic, two-stage, Enterobacter aerogenes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
222 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.

Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
221 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio D. Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from a real-life pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: Constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
220 Adsorption of Phenol, 3-Nitrophenol and Dyes from Aqueous Solutions onto an Activated Carbon Column under Semi-Batch and Continuous Operation

Authors: I. Moraitopoulos, Z. Ioannou, J. Simitzis

Abstract:

The present study examines the adsorption of phenol, 3-nitrophenol and dyes (methylene blue, alizarine yellow), from aqueous solutions onto a commercial activated carbon. Two different operations, semi-batch and continuous with reflux, were applied. The commercial activated carbon exhibits high adsorption abilities for phenol, 3-nitrophenol and dyes (methylene blue and alizarin yellow) from their aqueous solutions. The adsorption of all adsorbates after 1 h is higher by the continuous operation with reflux than by the semibatch operation. The adsorption of phenol is higher than that of 3-nitrophenol for both operations. Similarly, the adsorption of alizarin yellow is higher than that of methylene blue for both operations. The regenerated commercial activated carbon regains its adsorption ability due to the removal of the adsorbate from its pores during the regeneration.

Keywords: Activated carbon, adsorption, phenols, dyes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
219 Application of Feed Forward Neural Networks in Modeling and Control of a Fed-Batch Crystallization Process

Authors: Petia Georgieva, Sebastião Feyo de Azevedo

Abstract:

This paper is focused on issues of nonlinear dynamic process modeling and model-based predictive control of a fed-batch sugar crystallization process applying the concept of artificial neural networks as computational tools. The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. A feed forward neural network (FFNN) model of the process is first built as part of the controller structure to predict the process response over a specified (prediction) horizon. The predictions are supplied to an optimization procedure to determine the values of the control action over a specified (control) horizon that minimizes a predefined performance index. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. However, the simulation results demonstrated smooth behavior of the control actions and satisfactory reference tracking.

Keywords: Feed forward neural network, process modelling, model predictive control, crystallization process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
218 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: Biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
217 Adaptive Kernel Principal Analysis for Online Feature Extraction

Authors: Mingtao Ding, Zheng Tian, Haixia Xu

Abstract:

The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.

Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550