Micro-aerobic, Anaerobic and Two-stage Condition for Ethanol Production by enterobacter aerogenes from Biodiesel-derived Crude Glycerol
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32845
Micro-aerobic, Anaerobic and Two-stage Condition for Ethanol Production by enterobacter aerogenes from Biodiesel-derived Crude Glycerol

Authors: Kanokrat Saisaard, Irini Angelidaki, Poonsuk Prasertsan


The microbial production of ethanol from biodiesel¬derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic condition) exhibited higher ethanol production (24.5 g/L) than using one-stage fermentation (either micro-aerobic or anaerobic condition. The two- stage configuration, exhibited slightly higher crude glycerol consumption rate (1.81 g/L/h), as well as ethanol yield (0.56 g/g) than the one-stage configuration. Therefore, two-stage process was selected for ethanol production from E. aerogenes TISTR1468 in scale-up studies.

Keywords: crude glycerol, ethanol, micro-aerobic, two-stage, Enterobacter aerogenes

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078939

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335


[1] J. M. Marchetti, V. U. Miguel, and, A. F. Errazu, "Possible methods for biodiesel production,” Renew. Sust. Energy. Rev., vol. 11, pp. 1300-1311, 2007.
[2] M. A. Dasari, P. P. Kiatsimkul, W. R. Sutterlin, and G. J. Suppes, "Low-pressure hydrogenolysis of glycerol to propylene glycol,” Appl. Catalysis., vol. 281, no. 1-2, pp. 225-231, 2005.
[3] J. C. Thompson, and B. B. He, "Characterization of the crude glycerol from biodisel production from multiple feedstocks,” Appl. Eng. Agri., vol. 22, pp. 261-265, 2006.
[4] Z. M. Zheng, Q. L. Hu, J. Hao, F. Xu, N. N. Guo, Y. Sun, and D. H. Liu, "Statistical optimization of culture condition for 1,3-propanediol by Klebsiella pneumoniae AC15 via central composite design,” Boresour. Technol. vol. 99, pp. 1052-1056, 2008.
[5] S. Sattayasamitsathit, P. Prasertsan, and P. Methacanon, "Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate," Process Biochem vol. 46, pp. 608-614, 2011.
[6] N. Pachauri, and B. He, "Value-added utilization of crude glycerol from biodiesel production,” A Survey of Current Research Activities. An ASABE Meeting Presentation, Oregon, 2006.
[7] T. Ito, Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio, "Hydrogen and ethanol production form glycerol-containing wastes discharged biodiesel manufacturing process,” J. Biosci. Bioeng., vol. 100, no. 3, pp. 260-265, 2005.
[8] M. F. Temudo, R. Poldermans, R. Kleerebezem, and M. C. M. Loosdrecht, "Glycerol fermentation by (open) mixed cultures: a chemostat study,” Biotechnol. Bioeng., vol. 100, pp. 1088-1098, 2008.
[9] A. Gupta, A. Murarka, P. Campbell, and R. Gonzalez, "Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants,” Appl. Environ. Microbiol., vol. 75, pp. 5871-5883, 2009.
[10] R. B. Oh, J. W. Seo, S. Y. Heo, W. K. Hong, L. H. Luo, M. H. Joe, D. H. Park, and C. H. Kim, "Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain," Bioresour. Technol., vol. 102, pp. 3918-3922, 2001.
[11] W. J. Choi, M. R. Hartono, W. H. Chan, and S. S. Yeo, "Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens," Appl. Microbiol. Biotechnol., vol. 89, pp. 1255-1264, 2011.
[12] C. Tongurai, S. Klinpikul, C. Bunyakan, and P. Kiatsimkul, "Biodiesel production from palm oil,” Songkla. J. Sci. Technol., vol. 23, pp. 831-841, 2001.
[13] F. Barbirato, S. Astruc, P. Soucaille., C. Camarasa, J. M. Salmon, and A. Bories, "Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM1210: limitations and regulations,” Microbiol., vol. 43, pp. 2423-2432, 1997.
[14] E. V. Handel, "Suggested modification of micro determination of triglycerides,” Clinical Chem., vol. 7, no. 3, pp. 249-251, 1961.
[15] X. Chen, D. J. Zhang, V. T. Qi, S. J. Gao, Z. L. Xiu, and P. Xu, "Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions,” Appl. Microbiol. Biotechnol., vol. 63, pp. 143-146, 2003.
[16] S. S. Yazdari, and R. Gonzalez, "Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry,” Curr. Opin. Biotechnol., vol. 18, pp. 213-219, 2007.
[17] G. Yang, J. Tian, and J. Li, "Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions," Appl. Micronbiol., vol. 73, pp. 1017-1024, 2007.