Search results for: 5083 Aluminium alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 356

Search results for: 5083 Aluminium alloy

266 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment

Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji

Abstract:

Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.

Keywords: Food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
265 Surface Modification of Titanium Alloy with Laser Treatment

Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan

Abstract:

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
264 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: High-temperature oxidation, alumina protective layer, iron-chromium-aluminum alloy, sintered-metal-fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
263 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe

Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud

Abstract:

In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.

Keywords: Ti5Al2.5Fe, mechanical alloying, hot pressing, sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
262 Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan, N. Mathiazhagan

Abstract:

Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.

Keywords: Laser Beam Welding (LBW), Mechanical properties, Titanium and Aluminium thin sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
261 Hot Deformability of Si-Steel Strips Containing Al

Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar

Abstract:

The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a  was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.

Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
260 Investigation of Mg and Zr Addition on the Mechanical Properties of Commercially Pure Al

Authors: Samiul Kaiser, M. S. Kaiser

Abstract:

The influence of Mg and Zr addition on mechanical properties such as hardness, tensile strength and impact energy of commercially pure Al are investigated. The microstructure and fracture behavior are also studied by using Optical and Scanning Electron Microscopy. It is observed that magnesium addition improves the mechanical properties of commercially pure Al at the expense of ductility due to formation of β (Al3Mg) and β (Al3Mg2) phase into the alloy. Zr addition also plays a positive role through grain refinement effect and the formation of metastable L12 Al3Zr precipitates. In addition, it is observed that the fractured surface of Mg added alloy is brittle and higher numbers of dimples are observed in case of Zr added alloy.

Keywords: Al-alloys, hardness, tensile strength, impact energy, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
259 Prediction of Fatigue Crack Growth of Aeronautical Aluminum Alloy

Authors: M. Benachour, M. Benguediab, A. Hadjoui, N. Benachour

Abstract:

In this paper fatigue crack growth behavior of aeronautical aluminum alloy 2024 T351 was studied. Effects of various loading and geometrical parameters are studied such as stress ratio, amplitude loading, etc. The fatigue crack growth with constant amplitude is studied using the AFGROW code when NASGRO model is used. The effect of the stress ratio is highlighted, where one notices a shift of the curves of crack growth. The comparative study between two orientations L-T and T-L on fatigue behavior are presented and shows the variation on the fatigue life. L-T orientation presents a good fatigue crack growth resistance. Effects of crack closure are shown in Paris domain and that no crack closure phenomenons are present at high stress intensity factor.

Keywords: Fatigue crack, orientation effect, crack closure, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
258 Shape Memory alloy Actuator System Optimization for New Hand Prostheses

Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli

Abstract:

Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.

Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
257 Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques

Authors: Nripjit, Anand K Tyagi, Nirmal Singh

Abstract:

The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.

Keywords: MMC, Thermographs, Tensile strength, Taguchi technique, Optimal parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
256 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
255 In-situ Quasistatic Compression and Microstructural Characterization of Aluminum Foams of Different Cell Topology

Authors: M. A. Islam, P. J. Hazell, J. P. Escobedo, M. Saadatfar

Abstract:

Metallic foams have good potential for lightweight structures for impact and blast mitigation. Therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximise energy absorption. In this paper, quasistatic compression and microstructural characterization of closed-cell aluminium foams of different pore size and cell distributions have been carried out. We present results for two different aluminium metal foams of density 0.49-0.51 g/cc and 0.31- 0.34 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behaviour has been investigated using optical microscope and computed tomography (micro-CT) analysis. It is shown that the deformation is not uniform in the structure and collapse begins at the weakest point.

Keywords: Metal foams, micro-CT, cell topology, quasistatic compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805
254 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: A. Nassef, S. Samy, W. H. El Garaihy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250°C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, Equal channel angular pressing, Grain refinement, Severe plastic deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
253 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures

Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß

Abstract:

Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.

Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
252 Study of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates

Authors: Satyanarayana, K.N. Prabhu

Abstract:

Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and finer Ag3Sn precipitates of IMCs with decreased tin dendrites. Contact angles ranging from 22° to 26° were obtained for Sn–0.7Cu solder solidified on substrate surface whereas for SAC0307 solder alloy contact angles were found to be in the range of 20° to 22°. Sn–0.7Cu solder/substrate interfacial region exhibited faceted (Cu, Ni)6Sn5 IMCs protruding into the solder matrix and a small amount of (Cu, Ni)3Sn4 intermetallics at the interface. SAC0307 solder/substrate interfacial region showed mainly (Cu, Ni)3Sn4 intermetallics adjacent to the coating layer and (Cu, Ni)6Sn5 IMCs in the solder matrix. The improvement in the wettability of SAC0307 solder alloy on substrate surface is attributed to the formation of cylindrical shape (Cu,Ni)6Sn5 and a layer of (Cu, Ni)3Sn4 IMCs at the interface.

Keywords: Lead-free solder, wetting, contact angle, intermetallics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
251 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.

Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
250 Improvement of Load Carrying Capacity of an RCC T-Beam Bridge Longitudinal Girder by Replacing Steel Bars with SMA Bars

Authors: N. K. Paul, S. Saha

Abstract:

An innovative three dimensional finite element model has beed developed and tested under two point loading system to examine the structural behavior of the longitudinal reinforced concrete Tee-beam bridge girder, reinforcing with steel and shape memory alloy bars respectively. 25% of steel bars are replaced with superelastic Shape Memory Alloy bars in this study. Finite element analysis is performed using ANSYS 11.0 program. Experimentally a model of steel reinforced girder has been casted and its load deflection responses are checked with ANSYS analysis. A comparison of load carrying capacity for the model between steel RC girder and the girder combined reinforcement with SMA and steel are also performed.

Keywords: Shape memory alloy, bridge girder, ANSYS, load-deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
249 Effect of 2wt% Cu Addition on the Tensile Properties and Fracture Behavior of Peak Aged Al-6Si-0.5Mg-2Ni Alloy at Various Strain Rates

Authors: A. Hossain, A. S. W. Kurny, M. A. Gafur

Abstract:

Effect of 2wt% Cu addition on tensile properties and fracture behavior of Al-6Si-0.5Mg-2Ni alloy at various strain rates were studied. The solution treated Al-6Si-0.5Mg-2Ni (-2Cu) alloys, were aged isochronally for 1 hour at temperatures up to 300oC. The uniaxial tension test was carried out at strain rate ranging from 10-4s-1 to 10-2s-1 in order to investigate the strain rate dependence of tensile properties. Tensile strengths were found to increase with ageing temperature and the maximum being attained ageing for 1 hr at 225oC (peak aged condition). Addition of 2wt% Cu resulted in an increase in tensile properties at all strain rates. Evaluation of tensile properties at three different strain rates (10-4, 10-3 and 10-2 s-1) showed that strain rates affected the tensile properties significantly. At higher strain rates the strength was better but ductility was poor. Microstructures of broken specimens showed that both the void coalescence and the interface debonding affect the fracture behavior of the alloys

Keywords: Al-Si-Mg-Ni-Cu alloy, tensile properties, strain rate, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
248 Determination of Recrystallization Temperature of Varying Degrees Formed Aluminium, by DMTA Technique

Authors: Zsolt Dugár, Péter Barkóczy, Gábor Béres, Dávid Kis, Attila Bata, Tamás Dugár, Zoltán Weltsch

Abstract:

This study is about the structural transformations of aluminium examining with the Dynamic Mechanical Thermal Analyzer (DMTA). It is a faster and simpler measuring method to make consequence about the metal’s structural transformations. The device measures the changing of the mechanical characteristics depending on the heating rate, and concludes certain transformations. This measuring method fast and shows clean-cut results comparing the conventional ways. Applying polymer measuring devices for metal investigations is not widespread method. One of the adaptable ways is shown in this study. The article compares the results of the small specimen test and the DMTA method, considering the temperature and the forming dependence of recrystallization temperature.

Keywords: DMTA, recrystallization, cold forming, rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
247 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: Nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
246 Application of Nano-Zero Valent Iron for Treating Metolachlor in Aqueous Solution

Authors: P. Suntornchot, T. Satapanajaru, S.D. Comfort

Abstract:

Water, soil and sediment contaminated with metolachlor poses a threat to the environment and human health. We determined the effectiveness of nano-zerovalent iron (NZVI) to dechlorinate metolachlor [2-chloro-n-(2-ethyl-6-methyl-phenyl)-n- (1-methoxypropan-2-yl)acetamide] in pH solution and the presence of aluminium salt. The optimum dosage of degradation of 100 mlL-1 metolachlor was 1% (w/v) NZVI. The degradation kinetic rate (kobs) was 0.218×10-3 min-1 and specific first-order rates (kSA) was 8.72×10-7 L m-2min-1. By treating aqueous solutions of metolachlor with NZVI, metolachlor destruction rate were increased as the pH decrease from 10 to 4. Lowering solution pH removes Fe (III) passivating layers from the NZVI and makes it free for reductive transformations. Destruction kinetic rates were 20.8×10-3 min-1 for pH4, 18.9×10-3 min-1 for pH7, 13.8×10-3 min-1 for pH10. In addition, destruction kinetic of metolachlor by NZVI was enhanced when aluminium sulfate was added. The destruction kinetic rate were 20.4×10-3 min-1 for 0.05% Al(SO4)3 and 60×10-3 min-1 for 0.1% Al(SO4)3.

Keywords: destruction, kinetic rate, metolachlor, nano-zerovalent iron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
245 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Authors: F. Brunke, L. Waalkes, C. Siemers

Abstract:

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti-15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the microstructure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti- 15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Keywords: Ti-15Mo, Titanium alloys, Rare earth metals, Free-machining alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3731
244 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
243 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
242 Effect of Al Addition on Microstructure and Physical Properties of Fe-36Ni Invar Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight percent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, Aluminum, Phase equilibrium, thermal expansion coefficient, microstructure, tensile properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
241 Study of Forging Process in 7075 Aluminum Alloy Professional Bicycle Pedal using Taguchi Method

Authors: Dyi-Cheng Chen, Wen-Hsuan Ku, Ming-Ren Chen

Abstract:

The current of professional bicycle pedal-s manufacturing model mostly used casting, forging, die-casting processing methods, so the paper used 7075 aluminum alloy which is to produce the bicycle parts most commonly, and employs the rigid-plastic finite element (FE) DEFORMTM 3D software to simulate and to analyze the professional bicycle pedal design. First we use Solid works 2010 3D graphics software to design the professional bicycle pedal of the mold and appearance, then import finite element (FE) DEFORMTM 3D software for analysis. The paper used rigid-plastic model analytical methods, and assuming mode to be rigid body. A series of simulation analyses in which the variables depend on different temperature of forging billet, friction factors, forging speed, mold temperature are reveal to effective stress, effective strain, damage and die radial load distribution for forging bicycle pedal. The analysis results hope to provide professional bicycle pedal forming mold references to identified whether suit with the finite element results for high-strength design suitability of aluminum alloy.

Keywords: Bicycle pedal, finite element analysis, 7075 aluminum alloy, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
240 Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys

Authors: M. Avinash, G. V. K. Chaitanya, Dhananjay Kumar Giri, Sarala Upadhya, B. K. Muralidhara

Abstract:

Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.

Keywords: Rotary friction weld, rotational speed, Ti-6Al-4V, weld structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
239 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
238 Heat Forging Analysis Method on Blank Consisting of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles; because, they have high strength and it is possible to press them into complicated shape. When itis possible to manufacture hollow forging parts, it leads to reduce weightof the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollowforging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can providecomplex forging parts that are reduced weight,ifit is possible to be melted the aluminum alloy away by using different of melting points.It is necessary to establish heat forging analysis methodon blank consist of stainless steel and aluminum alloy. Because,this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperaturesof two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blankconsist of two metals was established by result of numerical analysis having agreedwith result of forging experiment.

Keywords: Forging, lightweight, analysis, hollow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
237 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys

Authors: Dong Bok Lee, Min Jung Kim

Abstract:

The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.

Keywords: Oxynitriding, surface microhardness, titanium alloys, Ti-6Al-4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155