
 

 

  
Abstract—In this paper fatigue crack growth behavior of 

aeronautical aluminum alloy 2024 T351 was studied. Effects of 
various loading and geometrical parameters are studied such as stress 
ratio, amplitude loading, etc. The fatigue crack growth with constant 
amplitude is studied using the AFGROW code when NASGRO 
model is used. The effect of the stress ratio is highlighted, where one 
notices a shift of the curves of crack growth. The comparative study 
between two orientations L-T and T-L on fatigue behavior are 
presented and shows the variation on the fatigue life. L-T orientation 
presents a good fatigue crack growth resistance. Effects of crack 
closure are shown in Paris domain and that no crack closure 
phenomenons are present at high stress intensity factor. 
 

Keywords—Fatigue crack, orientation effect, crack closure, 
aluminum alloy.  

I. INTRODUCTION 
ATIGUE is damage caused by oscillating stress below the 
fracture stress. 90% of all mechanical failures can be 

attributed to fatigue [1]. The prediction of the fatigue crack 
growth rate at constant loading, loading or random variable is 
of practical interest for many aerospace applications, 
aerospace, automotive, structures, machines, pipes…etc. The 
major problem is to take into account the various parameters 
that affect the fatigue crack growth rate in both the intrinsic 
and extrinsic parameters as well as the estimation of the 
fatigue life. In general, the fatigue process is depicted by three 
distinct regions. Region I is associated with the growth of 
cracks with low ΔKth, and is commonly believed to account 
for a significant proportion of the fatigue life of a structure. 
Region II has received the greatest attention as it is in this 
region where the ‘‘Paris’’ crack growth law [2] can be 
applied. Several different variants of the Paris crack growth 
law have evolved [3-5]. Finally, region III is associated with 
rapid crack growth.  
Three orientations for aluminum alloy 2024 T3 are studied by 
Sarioglu and Orhaner [6] such as T-L, L-T and 60° with 
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respect to the rolling direction. The results show the crack 
propagation is faster in T–L direction than in L–T and 60° 
directions. Especially, the differences are pronounced at low 
ΔK values. Theses differences may be explained by the 
change of slip characteristics. Fatigue crack growth rate for 
6061 fabricated by PM and IM alloy in the T4 and T6 tempers 
in L-T and T-L directions are compared [7] when the L-T 
offered better fatigue crack growth resistance than the T-L 
orientation. The effect of the orientation is marked at low 
stress intensity factor. In others works [8] attributed the 
differences observed between the fatigue crack growth rate for 
two load ratio (R=0.1 and R=0.8) in both directions T-L and 
L-T for the alloy Ti-6Al-4V unlike the level closure. The 
model of fatigue crack growth rate developed by Paris and 
used by others authors cannot for another’s materials describe 
the totality of fatigue crack curve. Model accounting the 
totality of fatigue crack growth curve has been developed in 
NASA named NASGRO model [9].  The aim of this work is 
to shown crack orientations and crack closures effects on 
fatigue crack growth behavior using NASGRO model of the 
aluminum alloy 2024 T351. 

II. SIMULATION OF FATIGUE CRACK GROWTH  

A. Fatigue crack growth model  
Many models of fatigue crack growth rates are proposed by 

authors. Elber [10] proposed a modification to the Paris 
growth law by using the effective stress intensity range to 
calculate the crack propagation under constant amplitude 
loads, taking into account the crack closure concept. The 
model is defined by the relationship: 
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Strip-yield model from the NASGRO software has been 

applied to predict fatigue crack growth in two different 
aircraft aluminum alloys [11] under constant amplitude 
loading and programmed and random variable amplitude load 
histories. NASGRO model are expressed bellow:  
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f present the contribution of crack closure and the 

parameters C, n, p, q were determined experimentally and 
ΔKth is the crack propagation threshold value of the stress-
intensity factor range. NASGRO model implemented in 
AFGROW code by Harter [12] is used for this work and by 
others authors [13]. 

B. Material and specimen  
The material used in this study is the aluminum alloy 

2024-T351 as rolled plates. Two orientations are subjected to 
numerical fatigue tests such as T-L and L-T orientations. The 
basic mechanical properties for aluminum alloys 2024-T351 
are given in Table 1. Numerical fatigue crack growth tensile 
tests used Single Edge Notch Tensile “SENT” specimen 
shown on Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Single Edge Tensile specimen 
 

 
The stress intensity factor for the studied specimen with 

through crack is developed by Tada [13] and implemented in 
AFGROW code. The equation of this factor depends on 
several parameters and is written bellow:  
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The function f(a/w) for the specified specimen is defined bellow: 
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III. RESULTS AND DISCUSSIONS  

A. Stress ratio effect  
Single Edge Notch Tensile (SENT) specimen in two 

orientations is subjected to a constant loading with various 
load ratios. The Kmax fracture criteria are adopted for the limit 
of crack growth. Figs. 2 and 3 showed the effect of stress ratio 
on fatigue life N. As the stress ratio increases, the fatigue life 
increases. Theses results are in agreement with the literature 
results [14]. For R=0.40, the maximum crack length is 20.50 
mm, contrary to the crack length   for R=0.01 and R=0.1. 
After crack length (a=15 mm), the specimens are growth 
under the same crack growth rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Fatigue crack growth curves in L-T orientation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Fatigue crack growth curves in T-L orientation 
 

B. Crack orientation effect  
The analysis and the comparison of Figs. 2 and 3 show the 

effect OF CRACK orientation on the fatigue crack growth life 
according for to the two directions. For the same crack length, 
the difference for the fatigue life is not important 
(≈3000cycles) for the two orientations at R =0.1 (Fig. 4). For 
R =0.4, we show the difference in the final crack length. 

 
 

TABLE I 
MECHANICAL PROPERTIES OF ALUMINUM ALLOY 2024 T351  

DATABASE OF AFGROW CODE  

Orientation  σ0.2 

MPa. 
KIC 

MPa.(m)1/2 
KIC 

MPa.(m)1/2 
E 

MPa 
L-T 372.00 36.26 72.53 73.10 
T-L 358.53 31.87 63.73 73.00 
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Fig. 4 Effect of crack orientation on fatigue crack growth for R = 0.1 
 

C. Effect of crack closure  
The closure model in AFGROW is a fairly simple single-

parameter plasticity model, based on the Elber works. Others 
works justified the closure of crack on the presence of 
significant compressive residual stress in front. 

The crack closure model implemented in AFGROW code is 
based on evaluation of closure factor Cf, defined as the ratio 
of the opening stress to the maximum applied stress and was 
demonstrated to be a function of stress ratio (R=σmin/σmax). 

 
( )( ) ( )[ ]R1R6.01C10.1C 0ff −+−−=        (5)     (5) 

 
the closure factor is defined as:  
 

maxopenfC σσ=

 
The AFGROW closure model converts ∆Keff to an 

equivalent ∆K based on the relationship between the closure 
factor (Cf) and stress ratio (R). 
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For the input data Cf0 is specified and represent the closure 

factor for R=0. 
 
Fig 5 shows the variation of crack length (a) under crack 

closure effect for stress ratio R =0.1 and the closure factors 
Cf0=0.25. On the presence of crack closure effect, we notice 
the same effect with the change of crack growth orientation 
(L-T, T-L). Fig. 6 shown the fatigue crack growth rate for R 
=0.1 with the presence of crack closure phenomenon in two 
orientation (L-T and T-L). At high of effective stress intensity 
factor the crack growth data are not in the same curve. This 
result shows the absence of crack closure effect in the 
specified orientation.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Effect of crack orientation on fatigue crack growth 
with the presence of crack closure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Fatigue crack growth rate in two crack orientations 
with the presence of crack closure 

IV. CONCLUSION  
In this paper simulation of fatigue crack growth of single 

edge notch tensile (SENT) specimen for aluminum alloy 2024 
T351 are presented. Many parameters effects are studied such 
as stress ratio, crack orientation and crack closure effect. The 
stress ratio R affects the total fatigue life. The increasing of 
this ratio, increase the fatigue life. Crack orientation L-T or T-
L affect the fatigue crack growth. Results show the good 
fatigue resistance in L-T orientation comparatively to the T-L 
orientation. No crack closure effects have shown at high 
effective stress intensity factor.  In future, this work was 
accomplished by experimental work when others effects will 
be considered and associated such as residual stress, overload, 
under-load, etc.  
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