Search results for: discrete manufacturing
196 The Safety of WiMAX Insolid Propellant Rocket Production
Authors: Jiradett K., Ornin S.
Abstract:
With the advance in wireless networking, IEEE 802.16 WiMAX technology has been widely deployed for several applications such as “last mile" broadband service, cellular backhaul, and high-speed enterprise connectivity. As a result, military employed WiMAX as a high-speed wireless connection for data-link because of its point to multi-point and non-line-of-sight (NLOS) capability for many years. However, the risk of using WiMAX is a critical factor in some sensitive area of military applications especially in ammunition manufacturing such as solid propellant rocket production. The US DoD policy states that the following certification requirements are met for WiMAX: electromagnetic effects on the environment (E3) and Hazards of Electromagnetic Radiation to Ordnance (HERO). This paper discuses the Recommended Power Densities and Safe Separation Distance (SSD) for HERO on WiMAX systems deployed on solid propellant rocket production. The result of this research found that WiMAX is safe to operate at close proximity distances to the rocket production based on AF Guidance Memorandum immediately changing AFMAN 91-201.
Keywords: WiMAX, ammunition, explosive, munition, solidpropellant, safety, rocket, missile
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002195 Advantages of Composite Materials in Aircraft Structures
Authors: Muniyasamy Kalanchiam, Moorthy Chinnasamy
Abstract:
In the competitive environment of aircraft industries it becomes absolutely necessary to improve the efficiency, performance of the aircrafts to reduce the development and operating costs considerably, in order to capitalize the market. An important contribution to improve the efficiency and performance can be achieved by decreasing the aircraft weight through considerable usage of composite materials in primary aircraft structures. In this study, a type of composite material called Carbon Fiber Reinforced Plastic (CFRP) is explored for the usage is aircraft skin panels. Even though there were plenty of studies and research has been already carried out, here a practical example of an aircraft skin panel is taken and substantiated the benefits of composites material usage over the metallic skin panel. A crown skin panel of a commercial aircraft is designed using both metal and composite materials. Stress analysis has been carried out for both and margin of safety is estimated for the critical load cases. The skin panels are compared for manufacturing, tooling, assembly and cost parameters. Detail step by step comparison between metal and composite constructions are studied and results are tabulated for better understanding.Keywords: Composites, CFRP, Aircraft Structure, Skin panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10664194 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve
Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk
Abstract:
The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.
Keywords: Electro Hydraulic Servo Valve, fluid power control system, system stiffness, static and dynamic performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683193 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: Incremental forming, numerical simulation, MPIF, multipoint forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314192 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites
Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande
Abstract:
The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.
Keywords: Delamination, FRP composite, multi response optimization, Taguchi design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236191 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall
Authors: Muzna Tariq, Ihtzaz Qamar
Abstract:
In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.
Keywords: Computational Fluid Dynamics, CFD, conduction, conjugate heat transfer, CHT, convection, fluid flow, thermocouples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699190 Methods for Manufacture of Corrugated Wire Mesh Laminates
Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely
Abstract:
Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210189 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension
Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald
Abstract:
In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721188 The Role of Organizational Culture in Facilitating Employee Job Satisfaction in Emerald Group
Authors: Mohamed Haffar, Muhammad Abdul Aziz, Ahmad Ghoneim
Abstract:
The importance of having a good organizational culture that supports employee job satisfaction has fascinated both the business and academic world because of a tantalizing promise: culture can be fundamental to the enhancement of financial performance. This promise has led to growing interest for both researchers and practitioners in attempting to understand the influence of organizational culture on employees’ satisfaction and organizational performance. Even though the relationship between organizational culture and employee job satisfaction have gained attention in the literature, the majority of studies have been conducted within manufacturing organizations and tend to oversee the impact of culture on employee job satisfaction in a service-based environment. Thus, the main driving force of this study was to explore the role of organizational culture types in facilitating employee job satisfaction at Emerald Publishing Group. Interviews qualitative data analysis indicated that Emerald’s culture dominated by adhocracy and clan culture values. In addition, the findings provided evidence, which demonstrated that group and adhocracy organizational culture types play key roles in facilitating employee job satisfaction in a service-based environment.
Keywords: Employee satisfaction, organizational culture, performance, service based environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504187 Pin type Clamping Attachment for Remote Setup of Machining Process
Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim
Abstract:
Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643186 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio D. Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from a real-life pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: Constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977185 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718
Authors: Pushpendra S. Bharti, S. Maheshwari
Abstract:
Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.
Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200184 Technical Determinants of Success in Quality Management Systems Implementation in the Automotive Industry
Authors: Agnieszka Misztal
Abstract:
The popularity of quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel, it is appropriate to focus attention on the selection of companies aspiring to a quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out a series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car) 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). The identified determinants were divided into two types of criteria: internal and external, as well as hard and soft. The article presents the hard – technical factors that an automotive company must meet in order to achieve the goal of the quality management system implementation.Keywords: Automotive industry, quality management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806183 Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip Chip Packaging
Authors: Zainudin Kornain, Azman Jalar, Rozaidi Rasid, Fong Chee Seng
Abstract:
Void formation in underfill is considered as failure in flip chip manufacturing process. Void formation possibly caused by several factors such as poor soldering and flux residue during die attach process, void entrapment due moisture contamination, dispense pattern process and setting up the curing process. This paper presents the comparison of single step and two steps curing profile towards the void and black dots formation in underfill for Hi-CTE Flip Chip Ceramic Ball Grid Array Package (FC-CBGA). Statistic analysis was conducted to analyze how different factors such as wafer lot, sawing technique, underfill fillet height and curing profile recipe were affected the formation of voids and black dots. A C-Mode Scanning Aqoustic Microscopy (C-SAM) was used to scan the total count of voids and black dots. It was shown that the 2 steps curing profile provided solution for void elimination and black dots in underfill after curing process.Keywords: black dots formation, curing profile, FC-CBGA, underfill, void formation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4074182 Environmental Responsibility and Firm Performance: Evidence from Nigeria
Authors: Collins C. Ngwakwe
Abstract:
The objective of this paper is to establish a possible relationship between sustainable business practice and firm performance. Using a field survey methodology, a sample of sixty manufacturing companies in Nigeria was studied. The firms were categorised into two groups, environmentally 'responsible' and 'irresponsible' firms. An investigation was undertaken into the possible relationship between firm performance and three selected indicators of sustainable business practice: employee health and safety (EHS), waste management (WM), and community development (CD), common within the 30 'responsible' firms. Findings from empirical results reveal that the sustainable practices of the 'responsible' firms are significantly related with firm performance. In addition, sustainable practices are inversely related with fines and penalties. The paper concludes that, within the Nigerian setting at least, sustainability affects corporate performance and sustainability may be a possible tool for corporate conflict resolution as evidenced in the reduction of fines, penalties and compensations. The paper therefore recommends research into the relationship between sustainability and conflict management.
Keywords: Environmental responsibility, environmental investment, social responsibility, sustainable business, social ethics, environmental ethics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4019181 Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach
Authors: Inaki Maulida Hakim, T. Yuri M. Zagloel, Astari Wulandari
Abstract:
Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.
Keywords: Assembly line, efficiency, improvement, line balancing, productivity, six sigma, workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825180 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete
Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton
Abstract:
Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.Keywords: Perlite concrete, poly-lactic acid, expanded polystyrene, concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240179 Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference
Authors: Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping
Abstract:
Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.
Keywords: Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150178 Augmenting Cultural Heritage Through 4.0 Technologies: A Research on the Archival Jewelry of the Gianfranco Ferré Research Center
Authors: Greta Rizzi, Ashley Gallitto, Federica Vacca
Abstract:
Looking at design artifacts as bearers and disseminators of material knowledge and intangible socio-cultural meanings, the significance of archival jewelry was investigated following digital cultural heritage research streams. The application of the reverse engineering concept guided the research path: starting with the study of Gianfranco Ferré's archival jewelry and analyzing its technical heritage and symbolic value, the digitalization, dematerialization, and rematerialization of the artifact were carried out. According to that, the proposed paper results from research conducted within the residency program between the Gianfranco Ferré Research Center (GFRC) and Massachusetts Institute of Technology (MIT), involving both the Design and Mechanical Engineering Departments of Politecnico di Milano. The paper will discuss the analysis of traditional design manufacturing techniques, re-imagined through 3D scanning, 3D modeling, and 3D printing technical knowledge while emphasizing the significance of the designer's role as an explorer of socio-cultural meanings and technological mediators in the analog-digital-analog transition.
Keywords: Archival jewelry, cultural heritage, rematerialization, reverse engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26177 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem
Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih
Abstract:
Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.
Keywords: Evolutionary Algorithms, Chemical Reaction Optimization, Traveling Salesman, Board Drilling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235176 Analysis of GI/M(n)/1/N Queue with Single Working Vacation and Vacation Interruption
Authors: P. Vijaya Laxmi, V. Goswami, V. Suchitra
Abstract:
This paper presents a finite buffer renewal input single working vacation and vacation interruption queue with state dependent services and state dependent vacations, which has a wide range of applications in several areas including manufacturing, wireless communication systems. Service times during busy period, vacation period and vacation times are exponentially distributed and are state dependent. As a result of the finite waiting space, state dependent services and state dependent vacation policies, the analysis of these queueing models needs special attention. We provide a recursive method using the supplementary variable technique to compute the stationary queue length distributions at pre-arrival and arbitrary epochs. An efficient computational algorithm of the model is presented which is fast and accurate and easy to implement. Various performance measures have been discussed. Finally, some special cases and numerical results have been depicted in the form of tables and graphs.
Keywords: State Dependent Service, Vacation Interruption, Supplementary Variable, Single Working Vacation, Blocking Probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162175 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291174 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494173 Performance Evaluation of Minimum Quantity Lubrication on EN3 Mild Steel Turning
Authors: Swapnil Rajan Jadhav, Ajay Vasantrao Kashikar
Abstract:
Lubrication, cooling and chip removal are the desired functions of any cutting fluid. Conventional or flood lubrication requires high volume flow rate and cost associated with this is higher. In addition, flood lubrication possesses health risks to machine operator. To avoid these consequences, dry machining and minimum quantity are two alternatives. Dry machining cannot be a suited alternative as it can generate greater heat and poor surface finish. Here, turning work is carried out on a Lathe machine using EN3 Mild steel. Variable cutting speeds and depth of cuts are provided and corresponding temperatures and surface roughness values were recorded. Experimental results are analyzed by Minitab software. Regression analysis, main effect plot, and interaction plot conclusion are drawn by using ANOVA. There is a 95.83% reduction in the use of cutting fluid. MQL gives a 9.88% reduction in tool temperature, this will improve tool life. MQL produced a 17.64% improved surface finish. MQL appears to be an economical and environmentally compatible lubrication technique for sustainable manufacturing.
Keywords: ANOVA, MQL, regression analysis, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378172 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871171 Nonparametric Control Chart Using Density Weighted Support Vector Data Description
Authors: Myungraee Cha, Jun Seok Kim, Seung Hwan Park, Jun-Geol Baek
Abstract:
In manufacturing industries, development of measurement leads to increase the number of monitoring variables and eventually the importance of multivariate control comes to the fore. Statistical process control (SPC) is one of the most widely used as multivariate control chart. Nevertheless, SPC is restricted to apply in processes because its assumption of data as following specific distribution. Unfortunately, process data are composed by the mixture of several processes and it is hard to estimate as one certain distribution. To alternative conventional SPC, therefore, nonparametric control chart come into the picture because of the strength of nonparametric control chart, the absence of parameter estimation. SVDD based control chart is one of the nonparametric control charts having the advantage of flexible control boundary. However,basic concept of SVDD has been an oversight to the important of data characteristic, density distribution. Therefore, we proposed DW-SVDD (Density Weighted SVDD) to cover up the weakness of conventional SVDD. DW-SVDD makes a new attempt to consider dense of data as introducing the notion of density Weight. We extend as control chart using new proposed SVDD and a simulation study of various distributional data is conducted to demonstrate the improvement of performance.
Keywords: Density estimation, Multivariate control chart, Oneclass classification, Support vector data description (SVDD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124170 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation
Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi
Abstract:
The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143169 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP
Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh
Abstract:
This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.
Keywords: Apparel, AutoLISP, Malay Traditional Clothes, Pattern Ganeration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383168 Impact of ISO 9000 on Time-based Performance: An Event Study
Authors: Chris K. Y. Lo, Andy C. L. Yeung, T. C. Edwin Cheng
Abstract:
ISO 9000 is the most popular and widely adopted meta-standard for quality and operational improvements. However, only limited empirical research has been conducted to examine the impact of ISO 9000 on operational performance based on objective and longitudinal data. To reveal any causal relationship between the adoption of ISO 9000 and operational performance, we examined the timing and magnitude of change in time-based performance as a result of ISO 9000 adoption. We analyzed the changes in operating cycle, inventory days, and account receivable days prior and after the implementation of ISO 9000 in 695 publicly listed manufacturing firms. We found that ISO 9000 certified firms shortened their operating cycle time by 5.28 days one year after the implementation of ISO 9000. In the long-run (3 years after certification), certified firms showed continuous improvement in time-based efficiency, and experienced a shorter operating cycle time of 11 days than that of non-certified firms. There was an average of 6.5% improvement in operating cycle time for ISO 9000 certified firms. Both inventory days and account receivable days showed similar significant improvements after the implementation of ISO 9000, too.
Keywords: ISO 9000, Operating Cycle, Time-based efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079167 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
Keywords: Axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220