Search results for: Multi-Objective Optimization
758 Optimization of Artificial Ageing Time and Temperature on Evaluation of Hardness and Resistivity of Al-Si-Mg (Cu or/& Ni) Alloys
Authors: A. Hossain, A. S. W. Kurny
Abstract:
The factors necessary to obtain an optimal heat treatment that influence the hardness and resistivity of Al-6Si-0.5Mg casting alloys with Cu or/and Ni additions were investigated. The alloys were homogenised (24hr at 500oC), solutionized (2hr at 540oC) and artificially ageing at various times and temperatures. The alloys were aged isochronally for 60 minutes at temperatures up to 400oC and isothermally at 150, 175, 200, 225, 250 & 300oC for different periods in the range 15 to 360 minutes. The hardness and electrical resistivity of the alloys were measured for various artificial ageing times and temperatures. From the isochronal ageing treatment, hardness found maximum ageing at 225oC. And from the isothermal ageing treatment, hardness found maximum for 60 minutes at 225oC. So the optimal heat treatment consists of 60 minutes ageing at 225oC.
Keywords: Ageing, Al-Si-Mg alloy, hardness, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065757 Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)
Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei
Abstract:
A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.
Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926756 Learning of Class Membership Values by Ellipsoidal Decision Regions
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.
Keywords: Ellipsoid, genetic algorithm, decision regions, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428755 Role of GIS in Distribution Power Systems
Authors: N. Rezaee, M Nayeripour, A. Roosta, T. Niknam
Abstract:
With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.
Keywords: Geographic information systems (GIS), optimallocation and capacity, power distribution planning, route selection, spatial load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5505754 Sparsity-Aware and Noise-Robust Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790753 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images
Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi
Abstract:
This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.Keywords: training algorithm, multiface, static image, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571752 Symbolic Analysis of Large Circuits Using Discrete Wavelet Transform
Authors: Ali Al-Ataby , Fawzi Al-Naima
Abstract:
Symbolic Circuit Analysis (SCA) is a technique used to generate the symbolic expression of a network. It has become a well-established technique in circuit analysis and design. The symbolic expression of networks offers excellent way to perform frequency response analysis, sensitivity computation, stability measurements, performance optimization, and fault diagnosis. Many approaches have been proposed in the area of SCA offering different features and capabilities. Numerical Interpolation methods are very common in this context, especially by using the Fast Fourier Transform (FFT). The aim of this paper is to present a method for SCA that depends on the use of Wavelet Transform (WT) as a mathematical tool to generate the symbolic expression for large circuits with minimizing the analysis time by reducing the number of computations.Keywords: Numerical Interpolation, Sparse Matrices, SymbolicAnalysis, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551751 Optimization and Determination of Process Parameters in Thin Film SOI Photo-BJMOSFET
Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Guo-Liang Zhang, Tai-Hong Wang
Abstract:
We propose photo-BJMOSFET (Bipolar Junction Metal-Oxide-Semiconductor Field Effect Transistor) fabricated on SOI film. ITO film is adopted in the device as gate electrode to reduce light absorption. I-V characteristics of photo-BJMOSFET obtained in dark (dark current) and under 570nm illumination (photo current) are studied furthermore to achieve high photo-to-dark-current contrast ratio. Two variables in the calculation were the channel length and the thickness of the film which were set equal to six different values, i.e., L=2, 4, 6, 8, 10, and 12μm and three different values, i.e., dsi =100, 200 and 300nm, respectively. The results indicate that the greatest photo-to-dark-current contrast ratio is achieved with L=10μm and dsi=200 nm at VGK=0.6V.
Keywords: Photo-to-dark-current contrast ratio, Photo-current, Dark-current, Process parameter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452750 Self-evolving Neural Networks Based On PSO and JPSO Algorithms
Authors: Abdussamad Ismail, Dong-Sheng Jeng
Abstract:
A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.
Keywords: Neural networks, Topology evolution, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807749 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)
Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla
Abstract:
The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.Keywords: Load frequency control, PSO, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027748 Dynamic Synthesis of a Flexible Multibody System
Authors: Mohamed Amine Ben Abdallah, Imed Khemili, Nizar Aifaoui
Abstract:
This work denotes an insight into dynamic synthesis of multibody systems. A set of mechanism parameters design variable are synthetized based on a desired mechanism response, such as, velocity, acceleration and bodies deformations. Moreover, knowing the work space, for a robot, and mechanism response allow defining optimal parameters mechanism handling with the desired target response. To this end, evolutionary genetic algorithm has been deployed. A demonstrative example for imperfect mechanism has been treated, mainly, a slider crank mechanism with a flexible connecting rod. The transversal deflection of the connecting rod has been chosen as response to identify the mechanism design parameters.
Keywords: Dynamic response, flexible bodies, optimization, evolutionary genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462747 Hydrogeological Aspects of Washing Waste Reuse in Quarry Lakes Rehabilitation
Authors: Paola Gattinoni, Laura Scesi
Abstract:
According to the European laws, there is the possibility of reusing the washing wastes for the environmental requalification of quarry lakes. The paper deals with the hydrogeological aspects involved in this possibility, as the introduction of finest wastes in the quarry lakes can generate alterations of the hydrogeological setting of the area, and problems for the future accessibility of the zone. To evaluate the hydrogeological compatibility of the washing wastes reuse in quarry lakes a groundwater numerical model was carried out, pointing out both the hydrogeological feasibility of this intervention and some guide lines for its optimization, in terms of inflow point with regard the groundwater flow direction and loss of volume in the quarry lake.Keywords: Groundwater numerical modeling, hydrogeologicalalteration, quarry lake, silty-clay wastes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782746 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults
Authors: Sarah Odofin, Zhiwei Gao, Sun Kai
Abstract:
Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.
Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559745 Image Authenticity and Perceptual Optimization via Genetic Algorithm and a Dependence Neighborhood
Authors: Imran Usman, Asifullah Khan, Rafiullah Chamlawi, Abdul Majid
Abstract:
Information hiding for authenticating and verifying the content integrity of the multimedia has been exploited extensively in the last decade. We propose the idea of using genetic algorithm and non-deterministic dependence by involving the un-watermarkable coefficients for digital image authentication. Genetic algorithm is used to intelligently select coefficients for watermarking in a DCT based image authentication scheme, which implicitly watermark all the un-watermarkable coefficients also, in order to thwart different attacks. Experimental results show that such intelligent selection results in improvement of imperceptibility of the watermarked image, and implicit watermarking of all the coefficients improves security against attacks such as cover-up, vector quantization and transplantation.
Keywords: Digital watermarking, fragile watermarking, geneticalgorithm, Image authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519744 Motion Planning and Posture Control of the General 3-Trailer System
Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai
Abstract:
This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.
Keywords: Artificial potential fields, 3-trailer systems, motion planning, posture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151743 The Application of Data Mining Technology in Building Energy Consumption Data Analysis
Authors: Liang Zhao, Jili Zhang, Chongquan Zhong
Abstract:
Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.
Keywords: Data mining, data analysis, prediction, optimization, building operational performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709742 Investigation of the Synthesis of Alcohols Byproducts in Fischer-Tropsch Synthesis on Modified Fe-Cu Catalyst: Reactivity and Mechanism
Authors: Wanyu Mao, Qiwen Sun, Weiyong Ying, Dingye Fang
Abstract:
The influence of copper promoters and reaction conditions on the formation of alcohols byproducts of a common Fischer-Tropsch synthesis used iron-based catalysts were investigated. A good compromise of 28%Cu/FeKLaSiO2 can lead to the optimization of an improved Fischer-Tropsch catalyst. The product distribution shifts towards hydrocarbons with increasing the reaction temperature, while pressure promotes the formation of alcohols. It was found that the production of either alcohols or hydrocarbons followed A-S-F distributions, and their α parameters were essentially different which indicated a competition in the growing chain between the two species. TPD after acetaldehyde adsorption gave strong evidence of the insertion of a C1 oxygen-containing species into an alkyl chain.Keywords: Fischer-Tropsch synthesis, Fe-Cu catalyst, alcohols byproducts, reaction pathways
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634741 An Effective Hybrid Genetic Algorithm for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is well known as one of the most difficult combinatorial optimization problems. This paper presents a hybrid genetic algorithm for the JSSP with the objective of minimizing makespan. The efficiency of the genetic algorithm is enhanced by integrating it with a local search method. The chromosome representation of the problem is based on operations. Schedules are constructed using a procedure that generates full active schedules. In each generation, a local search heuristic based on Nowicki and Smutnicki-s neighborhood is applied to improve the solutions. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.
Keywords: Genetic algorithm, Job shop scheduling problem, Local search, Meta-heuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652740 The Alignment of Information Systems and Environmental Organizations Model in Perspective Capability
Authors: Wartika, Kridanto Surendro, Husni Sastramiharja, Iping Supriana S.
Abstract:
The condition of the market is currently very dynamic, demanding organizations which is use system information to support the achievement of objectives should be necessarily improve the ability of information systems in accordance with the changes. Improved information systems capabilities need to align with the resource capabilities in internal environment of the organization, and vice versa. Alignment model between information systems and environment organizational in this capability perspective is expected can assist management in making the strategy for enhance the capability of information systems in accordance with resources internally within the organization, efficiency in the process of development, and optimization of contributions information systems in achieving organizational goals.
Keywords: Capability, alignment, information system, environmental organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684739 Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
Authors: Gishantha Thantulage, Tatiana Kalganova, Manissa Wilson
Abstract:
Ant Colony Algorithms have been applied to difficult combinatorial optimization problems such as the travelling salesman problem and the quadratic assignment problem. In this paper gridbased and random-based ant colony algorithms are proposed for automatic 3D hose routing and their pros and cons are discussed. The algorithm uses the tessellated format for the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speeds up computation. The performance of algorithm has been tested on a number of 3D models.Keywords: Ant colony algorithm, Automatic hose routing, tessellated format, RAPID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579738 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773737 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance
Abstract:
A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.Keywords: Aircraft, morphing, skin, twist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941736 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174735 Classification of Defects by the SVM Method and the Principal Component Analysis (PCA)
Authors: M. Khelil, M. Boudraa, A. Kechida, R. Drai
Abstract:
Analyses carried out on examples of detected defects echoes showed clearly that one can describe these detected forms according to a whole of characteristic parameters in order to be able to make discrimination between a planar defect and a volumic defect. This work answers to a problem of ultrasonics NDT like Identification of the defects. The problems as well as the objective of this realized work, are divided in three parts: Extractions of the parameters of wavelets from the ultrasonic echo of the detected defect - the second part is devoted to principal components analysis (PCA) for optimization of the attributes vector. And finally to establish the algorithm of classification (SVM, Support Vector Machine) which allows discrimination between a plane defect and a volumic defect. We have completed this work by a conclusion where we draw up a summary of the completed works, as well as the robustness of the various algorithms proposed in this study.Keywords: NDT, PCA, SVM, ultrasonics, wavelet
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002734 Optimal Control of Piezo-Thermo-Elastic Beams
Authors: Marwan Abukhaled, Ibrahim Sadek
Abstract:
This paper presents the vibrations suppression of a thermoelastic beam subject to sudden heat input by a distributed piezoelectric actuators. An optimization problem is formulated as the minimization of a quadratic functional in terms of displacement and velocity at a given time and with the least control effort. The solution method is based on a combination of modal expansion and variational approaches. The modal expansion approach is used to convert the optimal control of distributed parameter system into the optimal control of lumped parameter system. By utilizing the variational approach, an explicit optimal control law is derived and the determination of the corresponding displacement and velocity is reduced to solving a set of ordinary differential equations.
Keywords: Optimal control, Thermoelastic beam, variational approach, modal expansion approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416733 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.
Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658732 Pre- and Post-Analyses of Disruptive Quay Crane Scheduling Problem
Authors: K. -H. Yang
Abstract:
In the past, the quay crane operations have been well studied. There were a certain number of scheduling algorithms for quay crane operations, but without considering some nuisance factors that might disrupt the quay crane operations. For example, bad grapples make a crane unable to load or unload containers or a sudden strong breeze stops operations temporarily. Although these disruptive conditions randomly occur, they influence the efficiency of quay crane operations. The disruption is not considered in the operational procedures nor is evaluated in advance for its impacts. This study applies simulation and optimization approaches to develop structures of pre-analysis and post-analysis for the Quay Crane Scheduling Problem to deal with disruptive scenarios for quay crane operation. Numerical experiments are used for demonstrations for the validity of the developed approaches.
Keywords: Disruptive Quay Crane Scheduling, pre-analysis, post-analysis, disruption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749731 Systematic Functional Analysis Methods for Design Retrieval and Documentation
Authors: L. Zehtaban, D. Roller
Abstract:
Apart from geometry, functionality is one of the most significant hallmarks of a product. The functionality of a product can be considered as the fundamental justification for a product existence. Therefore a functional analysis including a complete and reliable descriptor has a high potential to improve product development process in various fields especially in knowledge-based design. One of the important applications of the functional analysis and indexing is in retrieval and design reuse concept. More than 75% of design activity for a new product development contains reusing earlier and existing design know-how. Thus, analysis and categorization of product functions concluded by functional indexing, influences directly in design optimization. This paper elucidates and evaluates major classes for functional analysis by discussing their major methods. Moreover it is finalized by presenting a noble hybrid approach for functional analysis.Keywords: Functional analysis, design reuse, functionalindexing and representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5170730 A Hybrid Search Algorithm for Solving Constraint Satisfaction Problems
Authors: Abdel-Reza Hatamlou, Mohammad Reza Meybodi
Abstract:
In this paper we present a hybrid search algorithm for solving constraint satisfaction and optimization problems. This algorithm combines ideas of two basic approaches: complete and incomplete algorithms which also known as systematic search and local search algorithms. Different characteristics of systematic search and local search methods are complementary. Therefore we have tried to get the advantages of both approaches in the presented algorithm. The major advantage of presented algorithm is finding partial sound solution for complicated problems which their complete solution could not be found in a reasonable time. This algorithm results are compared with other algorithms using the well known n-queens problem.Keywords: Constraint Satisfaction Problem, Hybrid SearchAlgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376729 Design of Folded Cascode OTA in Different Regions of Operation through gm/ID Methodology
Authors: H. Daoud Dammak, S. Bensalem, S. Zouari, M. Loulou
Abstract:
This paper presents an optimized methodology to folded cascode operational transconductance amplifier (OTA) design. The design is done in different regions of operation, weak inversion, strong inversion and moderate inversion using the gm/ID methodology in order to optimize MOS transistor sizing. Using 0.35μm CMOS process, the designed folded cascode OTA achieves a DC gain of 77.5dB and a unity-gain frequency of 430MHz in strong inversion mode. In moderate inversion mode, it has a 92dB DC gain and provides a gain bandwidth product of around 69MHz. The OTA circuit has a DC gain of 75.5dB and unity-gain frequency limited to 19.14MHZ in weak inversion region.Keywords: CMOS IC design, Folded Cascode OTA, gm/ID methodology, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11726