

Abstract—In this paper we present a hybrid search algorithm for

solving constraint satisfaction and optimization problems. This
algorithm combines ideas of two basic approaches: complete and
incomplete algorithms which also known as systematic search and
local search algorithms. Different characteristics of systematic search
and local search methods are complementary. Therefore we have
tried to get the advantages of both approaches in the presented
algorithm. The major advantage of presented algorithm is finding
partial sound solution for complicated problems which their complete
solution could not be found in a reasonable time. This algorithm
results are compared with other algorithms using the well known
n-queens problem.

Keywords—Constraint Satisfaction Problem, Hybrid Search
Algorithm.

I. INTRODUCTION
ANY problems in the fields of artificial intelligence,
network, database, engineering and other areas of

computer science can be viewed as special cases of constraint
satisfaction problems, including image processing, natural
language parsing, routing, circuit design, scheduling and
more. A CSP is a problem composed of a finite set of
variables, each of which is associated with a finite domain,
and a set of constraints that restricts the values the variables
can simultaneously take [7]. The search space of CSPs is often
exponential. Therefore a number of different approaches to
the problem have been proposed to reduce the search space
and find a feasible solution in a reasonable time. Based on the
search space exploring and variable selection heuristics, those
algorithms can be divided into two major groups: complete
and incomplete algorithms.

Complete algorithms [2], [7] seek any solution or all
solutions of a CSP. Or they try to prove that no solution
exists. These algorithms also divided into subgroups. The
consistency (or constraint propagation) techniques try to
eliminate values that are inconsistent with some constraints.
There are many consistency techniques ensuring different
levels of consistency. The systematic search methods explore
systematically (and exhaustively) the whole search space.

Manuscript received September 17, 2007. This work was supported by
Islamic Azad University – Khoy branch.

Abdel-Reza Hatamlou is with Islamic Azad University, Khoy 58135-175,
Iran (phone: +98 461 2225704; e-mail: reza_hatamloo@yahoo.com).

Mohammad Reza Meybodi is with the Computer Engineering Department,
Amirkabir University of Technology Tehran 15875-4413, Iran (e-mail:
mmeybodi@akt.ac.ir).

Most common are so called tree search methods. They view
the search space as a search tree. Each node represents
mutually exclusive choices which partition the remaining
search space into disjoint sub-spaces. This structure enables to
remember with acceptable memory requirements, which parts
of the search space have already been visited. Usually, a node
corresponds to an assignment of a particular value to a
particular variable. The efficiency of tree search methods may
be significantly improved with the help of consistency
techniques. There are two basic ways of employing
consistency techniques together with tree search methods.
Look back schemes are invoked when the algorithm is
preparing to backtrack after encountering a dead-end. Look
ahead schemes can be employed whenever the algorithm is
preparing to assign a value to the next variable.

Incomplete search methods [4], [8] do not explore the
whole search space. They search the space either non-
systematically or in a systematic manner, but with a limit on
some resource. They may not provide a solution but their
computational time is reasonably reduced. They can not be
applied to find all solutions or to prove that no solution exits.
However, they may be sufficient when just some solution is
needed. Another application is to seek a feasible solution of an
optimization problem. There are two basic approaches for
incomplete search. The constructive algorithms gradually
extend a partial solution to a complete one. They are based on
tree search algorithms for satisfaction problems and may
benefit from constraint propagation. Iterative repair methods
start with an initial solution, found by some other approach.
Or it may be found randomly. They incrementally alter the
values to get a “better” one, and eventually an optimal or at
least a good enough solution. Their non-systematic nature
generally voids the guarantee of “completeness”, but they are
often able to get quickly close to the optimal solution and
overcome the algorithms based on tree search. These
algorithms may be applied to satisfaction problems, as well.
The search will move throughout all assignments and the
quality of the assignment will be determined by the number of
violated constraints. Important iterative repair methods are the
so called local search methods [4], [8]. Local search is based
on making small (local) changes in assignments to variables.
A way of moving from one solution to another is called a
move. A move is problem-specific. A set of all solutions that
differ from the current one in only one move is called a
neighborhood. At each iteration step, a solution is selected
from the current neighborhood (typically a better one). And it

A Hybrid Search Algorithm for Solving
Constraint Satisfaction Problems

Abdel-Reza Hatamlou, and Mohammad Reza Meybodi

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

2996International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

00
7.

pd
f

becomes the current solution. If the algorithm selected only
better solutions all the time, it could get entrapped in so called
local optimum. It is a solution whose neighborhood contains
only solutions with equal or worse cost, and it is not the
optimal solution (global optimum). To avoid this state, local
search is often equipped with various meta-heuristics
randomizing the search, i.e., allowing also worse neighbors to
be selected under certain conditions the algorithm is usually
bounded by some stopping criterion. It may be based on
computational time, number of moves or some other indicator.

Systematic search algorithms suffer from the disadvantage
of tree search. If a wrong decision is made early in the search
tree, it is necessary to undone it by backtracking. Many so far
assigned values are thrown away. Look-back and look-ahead
schemes try to reduce the importance of this problem, but they
can not solve it completely.

The local search algorithms decide upon complete solutions
and the absence of systematicity allows them to modify
assignments in any order. However, when a problem is tightly
constrained, a local search algorithm may not get to a solution.
Either the initial solution may be too far from it, or it may get
entrapped in a local optimum.

While algorithms based on tree search are due to constraint
propagation effective at finding solutions for tightly
constrained problems with complex and overlapping
constraints, the local search methods can be superior at
optimization problems that are loosely constrained.

II. HYBRID SEARCH ALGORITHM
The above mentioned considerations lead to conclusion that

the different characteristics of systematic search and local
search methods are complementary. Therefore promising
hybrid algorithms trying to get the advantages of both
approaches have been proposed recently [1], [5], [6].

The hybrid search algorithm, that we propose here, is based
on ideas of local search methods [4], [8]. However, in contrast
to classical local search techniques, it operates over feasible,
though not necessarily complete solutions. In such a solution,
some variables can be left unassigned. Still all hard constraints
on assigned variables must be satisfied. Similarly to
systematic search algorithms, this means that there are no
violations of constraints. Working with feasible incomplete
solutions has several advantages compared to the complete
infeasible assignments that usually occur in local search
techniques. For example, when the algorithm is not able to
find a complete solution, an incomplete (but feasible) one can
be returned, e.g., a solution with the least number of
unassigned variables found. Moreover, because of the iterative
character of the search, the algorithm can easily start, stop, or
continue from any feasible solution, either complete or
incomplete.

The search proceeds iteratively. See Fig. 1 for algorithm.
During each step, an unassigned or assigned variable is
initially selected. Typically an unassigned variable is chosen
like in systematic search. An assigned variable may be
selected when all variables are assigned but the solution is not
good enough. Once a variable is selected, a value from its

domain is chosen for assignment. Even if the best value is
selected, its assignment to the selected variable may cause
some conflicts with already assigned variables. At this point
this algorithm decides to accept or reject the current variable
and its value. If the number of conflicts was reasonable, such
conflicting variables are removed from the solution and
become unassigned and the selected value is assigned to the
selected variable. But, if the number of these conflicting
variables was great, current variable shall be rejected and a
new variable shall be selected. The reasonability for number
of conflicts is a heuristic problem. For presented algorithm we
have defined 20 percentages for reasonability. This means that
if the number of conflicts between current variable and
assigned variables was great than 20% of all assigned
variables, the current variable must be rejected. The algorithm
attempts to move from one (partial) feasible solution to
another via repetitive assignment of a selected value to a
selected variable. During this search, the feasibility of all
constraints in each iteration step is enforced by unassigning
the conflicting variables. The search is terminated when the
requested solution is found or when there is a timeout,
expressed, e.g., as a maximal number of iterations or available
time being reached. The best solution found is then returned.

The above algorithm schema is parameterised by three

functions: the variable chooser, the value chooser and the
conflict counter.

There are several guidelines how to select a variable. In
local search the variable participating in the largest number of
violations is usually selected first. In systematic search
algorithms, the first-fail principle is often used, i.e., a variable
whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints
or the variable with the smallest domain etc [3], [4], [7]. It is
possible to select the worst variable among all unassigned
variables but due to complexity of computing the heuristic
value, this could be rather expensive in some cases. Therefore
in the presented algorithm we select a subset of unassigned
variables randomly and then select the worst variable from

procedure hybrid_search(unlabeled, answer, max_repeat, max_conflict)
/* unlabeled is a list of un-labeled variables and answer is an incomplete

answer (empty at the start) */
 repeats=0;
 while unlabeled not empty & repeats<max_repeat
 repeats ++;
 variable = Variable_Chooser(unlabeled, answer);
 unlabeled -= variable;
 value = Value_Chooser(variable, answer);
 conflicts = Conflict_counter(variable, value,answer);
 if conflicts < max_conflict then
 unlabeled += label(answer, variable, value);
 /* label the variable and return conflict variables */
 else
 unlabeled += variable;
 end while;
 return answer;
end hybrid_search

Fig. 1 A kernel of the presented hybrid search algorithm

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

2997International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

00
7.

pd
f

this subset. The results will not be much worse and we can
select the variable much faster.

After selecting the variable we need to find a value to be
assigned. Typically, the most useful advice is to select the
best-fit value [3], [4], [7]. So, we are looking for a value,
which is most preferred for the variable and also which causes
the least trouble. It means that we need to find a value with
minimal potential future conflicts with other variables. To
remove cycling, it is possible to randomize the value selection
procedure. For example, it is possible to select five best values
for the variable and then choose one of them randomly.

III. RESULTS
In this section we will present the efficiency of the

described hybrid search algorithm on the N-queens problem.
We will compare the achieved results with another local
search and complete search algorithm. All presented results
were measured on Intel Pentium IV 2.4GHz, 256MB RAM,
Windows XP.

The N-queens problem is to place n queens on a n×n
chessboard so that no queen is under a direct attack from any
other one.

The algorithms which we used in this comparison are min-
conflicts [4], [7], [8] and full look ahead [7]. Min-Conflicts
algorithm is one of the typical local search algorithms and it is
highly efficient on the N-queens problem and full look ahead
algorithm is one of the complete search algorithms.

The time for solving the N-queens problem is given in the
Table I. It is not surprising that the local search algorithms are
much more efficient than complete search on this problem. So,
let’s focus only on the differences between the presented
hybrid search algorithm and the minimal conflicts algorithm.

As we can see on Fig. 2, the presented algorithm is nearly
as fast as the min-conflicts algorithm.

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of queens

tim
e

to
 s

ol
ve

 [m
s]

time[ms] (hybrid algorithm)

time[ms] (incomplete algorithm)

time[ms] (complete algorithm)

Fig. 2 Comparison of the time for the described algorithms; mean

value from 10 measurements

TABLE I
TIME TO SOLVE THE N-QUEENS PROBLEM; MEAN VALUE FROM 10

MEASUREMENTS

Number of
Queens

Hybrid
Algorithm

Incomplete
Algorithm

Complete
Algorithm

1000 0.150 s 0.070 s 20.372 s

2000 0.623 s 0.271 s ---

3000 1.305 s 0.562 s ---

4000 2.037 s 1.013 s ---

5000 3.575 s 1.696 s ---

6000 5.115 s 2.551 s ---

7000 7.072 s 3.552 s ---

8000 9.149 s 4.982 s ---

9000 11.516 s 7.220 s ---

10000 14.543 s 9.952 s ---

IV. CONCLUSION
We have presented a hybrid approach for solving constraint

satisfaction and optimization problems which combines ideas
of local search and systematic search algorithms. The basic
motivation was to design an algorithm for solving complicated
problems which their complete solution could not be found in
a reasonable time. We have compared the efficiency of the
described hybrid search algorithm with another local search
and systematic search algorithm on the N-queens problem.
The achieved results show that the presented algorithm is
nearly as fast as the local search algorithm. We believe that
this algorithm can be successfully applied to many constraint
satisfaction problems especially when working with sound
incomplete solutions is needed in general.

REFERENCES
[1] Narendra Jussien and Olivier Lhomme. Local search with constraint

propagation and conflict-based heuristics. Artificial Intelligence,
139(1):21–45, 2002.

[2] Vipin Kumar. Algorithms for constraint satisfaction problems: A survey.
AI Magazine, 13(1):32–44, 1992.

[3] K. Marriot, P. J. Stuckey. Programming with Constraints: An
Introduction. The MIT Press, 1998.

[4] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer-Verlag, 2000.

[5] W. Ruml. Incomplete tree search using adaptive probing. In Proceedings
of the 17th International Joint Conference on Artificial
 Intelligence (IJCAI-01), 2001.

[6] Andrea Schaerf. Combining local search and look-ahead for scheduling
and constraint satisfaction problems. In Proceedings of 15th
International Joint Conference on Artificial Intelligence (IJCAI-97),
pages 1254–1259, Nagoya, Japan, 1997.

[7] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[8] Stefan Voß. Meta-heuristics: State of the art. In Alexander Nareyek,

editor, Lcal search for planning and scheduling: revisited papers, pages
1–23. Springer-Verlag LNCS 2148, 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007

2998International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

00
7.

pd
f

