
 

 

  
Abstract—In this paper we present a hybrid search algorithm for 

solving constraint satisfaction and optimization problems. This 
algorithm combines ideas of two basic approaches: complete and 
incomplete algorithms which also known as systematic search and 
local search algorithms. Different characteristics of systematic search 
and local search methods are complementary. Therefore we have 
tried to get the advantages of both approaches in the presented 
algorithm. The major advantage of presented algorithm is finding 
partial sound solution for complicated problems which their complete 
solution could not be found in a reasonable time. This algorithm 
results are compared with other algorithms using the well known     
n-queens problem. 
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Algorithm.  

I. INTRODUCTION 
ANY problems in the fields of artificial intelligence, 
network, database, engineering and other areas of 

computer science can be viewed as special cases of constraint 
satisfaction problems, including image processing, natural 
language parsing, routing, circuit design, scheduling and 
more. A CSP is a problem composed of a finite set of 
variables, each of which is associated with a finite domain, 
and a set of constraints that restricts the values the variables 
can simultaneously take [7]. The search space of CSPs is often 
exponential. Therefore a number of different approaches to 
the problem have been proposed to reduce the search space 
and find a feasible solution in a reasonable time. Based on the 
search space exploring and variable selection heuristics, those 
algorithms can be divided into two major groups: complete 
and incomplete algorithms. 

Complete algorithms [2], [7] seek any solution or all 
solutions of a CSP. Or they try to prove that no solution 
exists. These algorithms also divided into subgroups. The 
consistency (or constraint propagation) techniques try to 
eliminate values that are inconsistent with some constraints. 
There are many consistency techniques ensuring different 
levels of consistency. The systematic search methods explore 
systematically (and exhaustively) the whole search space. 
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Most common are so called tree search methods. They view 
the search space as a search tree. Each node represents 
mutually exclusive choices which partition the remaining 
search space into disjoint sub-spaces. This structure enables to 
remember with acceptable memory requirements, which parts 
of the search space have already been visited. Usually, a node 
corresponds to an assignment of a particular value to a 
particular variable. The efficiency of tree search methods may 
be significantly improved with the help of consistency 
techniques. There are two basic ways of employing 
consistency techniques together with tree search methods. 
Look back schemes are invoked when the algorithm is 
preparing to backtrack after encountering a dead-end. Look 
ahead schemes can be employed whenever the algorithm is 
preparing to assign a value to the next variable. 

Incomplete search methods [4], [8] do not explore the 
whole search space. They search the space either non-
systematically or in a systematic manner, but with a limit on 
some resource. They may not provide a solution but their 
computational time is reasonably reduced. They can not be 
applied to find all solutions or to prove that no solution exits. 
However, they may be sufficient when just some solution is 
needed. Another application is to seek a feasible solution of an 
optimization problem. There are two basic approaches for 
incomplete search. The constructive algorithms gradually 
extend a partial solution to a complete one. They are based on 
tree search algorithms for satisfaction problems and may 
benefit from constraint propagation. Iterative repair methods 
start with an initial solution, found by some other approach. 
Or it may be found randomly. They incrementally alter the 
values to get a “better” one, and eventually an optimal or at 
least a good enough solution. Their non-systematic nature 
generally voids the guarantee of “completeness”, but they are 
often able to get quickly close to the optimal solution and 
overcome the algorithms based on tree search. These 
algorithms may be applied to satisfaction problems, as well. 
The search will move throughout all assignments and the 
quality of the assignment will be determined by the number of 
violated constraints. Important iterative repair methods are the 
so called local search methods [4], [8]. Local search is based 
on making small (local) changes in assignments to variables. 
A way of moving from one solution to another is called a 
move. A move is problem-specific. A set of all solutions that 
differ from the current one in only one move is called a 
neighborhood. At each iteration step, a solution is selected 
from the current neighborhood (typically a better one). And it 
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becomes the current solution. If the algorithm selected only 
better solutions all the time, it could get entrapped in so called 
local optimum. It is a solution whose neighborhood contains 
only solutions with equal or worse cost, and it is not the 
optimal solution (global optimum). To avoid this state, local 
search is often equipped with various meta-heuristics 
randomizing the search, i.e., allowing also worse neighbors to 
be selected under certain conditions the algorithm is usually 
bounded by some stopping criterion. It may be based on 
computational time, number of moves or some other indicator.  

Systematic search algorithms suffer from the disadvantage 
of tree search. If a wrong decision is made early in the search 
tree, it is necessary to undone it by backtracking. Many so far 
assigned values are thrown away. Look-back and look-ahead 
schemes try to reduce the importance of this problem, but they 
can not solve it completely.  

The local search algorithms decide upon complete solutions 
and the absence of systematicity allows them to modify 
assignments in any order. However, when a problem is tightly 
constrained, a local search algorithm may not get to a solution. 
Either the initial solution may be too far from it, or it may get 
entrapped in a local optimum. 

While algorithms based on tree search are due to constraint 
propagation effective at finding solutions for tightly 
constrained problems with complex and overlapping 
constraints, the local search methods can be superior at 
optimization problems that are loosely constrained. 

II. HYBRID SEARCH ALGORITHM 
The above mentioned considerations lead to conclusion that 

the different characteristics of systematic search and local 
search methods are complementary. Therefore promising 
hybrid algorithms trying to get the advantages of both 
approaches have been proposed recently [1], [5], [6]. 

The hybrid search algorithm, that we propose here, is based 
on ideas of local search methods [4], [8]. However, in contrast 
to classical local search techniques, it operates over feasible, 
though not necessarily complete solutions. In such a solution, 
some variables can be left unassigned. Still all hard constraints 
on assigned variables must be satisfied. Similarly to 
systematic search algorithms, this means that there are no 
violations of constraints. Working with feasible incomplete 
solutions has several advantages compared to the complete 
infeasible assignments that usually occur in local search 
techniques. For example, when the algorithm is not able to 
find a complete solution, an incomplete (but feasible) one can 
be returned, e.g., a solution with the least number of 
unassigned variables found. Moreover, because of the iterative 
character of the search, the algorithm can easily start, stop, or 
continue from any feasible solution, either complete or 
incomplete. 

The search proceeds iteratively. See Fig. 1 for algorithm. 
During each step, an unassigned or assigned variable is 
initially selected. Typically an unassigned variable is chosen 
like in systematic search. An assigned variable may be 
selected when all variables are assigned but the solution is not 
good enough. Once a variable is selected, a value from its 

domain is chosen for assignment. Even if the best value is 
selected, its assignment to the selected variable may cause 
some conflicts with already assigned variables. At this point 
this algorithm decides to accept or reject the current variable 
and its value. If the number of conflicts was reasonable, such 
conflicting variables are removed from the solution and 
become unassigned and the selected value is assigned to the 
selected variable. But, if the number of these conflicting 
variables was great, current variable shall be rejected and a 
new variable shall be selected. The reasonability for number 
of conflicts is a heuristic problem. For presented algorithm we 
have defined 20 percentages for reasonability. This means that 
if the number of conflicts between current variable and 
assigned variables was great than 20% of all assigned 
variables, the current variable must be rejected. The algorithm 
attempts to move from one (partial) feasible solution to 
another via repetitive assignment of a selected value to a 
selected variable. During this search, the feasibility of all 
constraints in each iteration step is enforced by unassigning 
the conflicting variables. The search is terminated when the 
requested solution is found or when there is a timeout, 
expressed, e.g., as a maximal number of iterations or available 
time being reached. The best solution found is then returned. 

 

 
The above algorithm schema is parameterised by three 

functions: the variable chooser, the value chooser and the 
conflict counter. 

There are several guidelines how to select a variable. In 
local search the variable participating in the largest number of 
violations is usually selected first. In systematic search 
algorithms, the first-fail principle is often used, i.e., a variable 
whose instantiation is most complicated is selected first. This 
could be the variable involved in the largest set of constraints 
or the variable with the smallest domain etc [3], [4], [7]. It is 
possible to select the worst variable among all unassigned 
variables but due to complexity of computing the heuristic 
value, this could be rather expensive in some cases. Therefore 
in the presented algorithm we select a subset of unassigned 
variables randomly and then select the worst variable from 

procedure hybrid_search(unlabeled, answer, max_repeat, max_conflict) 
/* unlabeled is a list of un-labeled variables and answer is an  incomplete 

answer (empty at the start) */ 
    repeats=0; 
    while unlabeled not empty & repeats<max_repeat 
        repeats ++; 
        variable = Variable_Chooser(unlabeled, answer); 
        unlabeled -= variable; 
        value = Value_Chooser(variable, answer); 
        conflicts = Conflict_counter(variable, value,answer); 
        if conflicts < max_conflict then 
           unlabeled += label(answer, variable, value); 
              /* label the variable and return conflict variables */ 
        else  
           unlabeled += variable; 
    end while; 
    return answer; 
end hybrid_search 
 

Fig. 1 A kernel of the presented hybrid search algorithm 
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this subset. The results will not be much worse and we can 
select the variable much faster. 

After selecting the variable we need to find a value to be 
assigned. Typically, the most useful advice is to select the 
best-fit value [3], [4], [7]. So, we are looking for a value, 
which is most preferred for the variable and also which causes 
the least trouble. It means that we need to find a value with 
minimal potential future conflicts with other variables. To 
remove cycling, it is possible to randomize the value selection 
procedure. For example, it is possible to select five best values 
for the variable and then choose one of them randomly. 

III. RESULTS 
In this section we will present the efficiency of the 

described hybrid search algorithm on the N-queens problem. 
We will compare the achieved results with another local 
search and complete search algorithm. All presented results 
were measured on Intel Pentium IV 2.4GHz, 256MB RAM, 
Windows XP. 

The N-queens problem is to place n queens on a n×n  
chessboard so that  no queen is under a direct attack from any 
other one. 

The algorithms which we used in this comparison are min-
conflicts [4], [7], [8] and full look ahead [7]. Min-Conflicts 
algorithm is one of the typical local search algorithms and it is 
highly efficient on the N-queens problem and full look ahead 
algorithm is one of the complete search algorithms. 

The time for solving the N-queens problem is given in the 
Table I. It is not surprising that the local search algorithms are 
much more efficient than complete search on this problem. So, 
let’s focus only on the differences between the presented 
hybrid search algorithm and the minimal conflicts algorithm.  

As we can see on Fig. 2, the presented algorithm is nearly 
as fast as the min-conflicts algorithm. 
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Fig. 2 Comparison of the time for the described algorithms; mean 

value from 10 measurements 
 
 
 
 
 
 
 

TABLE I 
TIME TO SOLVE THE N-QUEENS PROBLEM; MEAN VALUE FROM 10 

MEASUREMENTS 

Number of 
Queens 

Hybrid 
Algorithm 

Incomplete 
Algorithm 

Complete 
Algorithm 

1000 0.150 s 0.070 s 20.372 s 

2000 0.623 s 0.271 s --- 

3000 1.305 s 0.562 s --- 

4000 2.037 s 1.013 s --- 

5000 3.575 s 1.696 s --- 

6000 5.115 s 2.551 s --- 

7000 7.072 s 3.552 s --- 

8000 9.149 s 4.982 s --- 

9000 11.516 s 7.220 s --- 

10000 14.543 s 9.952 s --- 

 

IV. CONCLUSION 
We have presented a hybrid approach for solving constraint 

satisfaction and optimization problems which combines ideas 
of local search and systematic search algorithms. The basic 
motivation was to design an algorithm for solving complicated 
problems which their complete solution could not be found in 
a reasonable time. We have compared the efficiency of the 
described hybrid search algorithm with another local search 
and systematic search algorithm on the N-queens problem. 
The achieved results show that the presented algorithm is 
nearly as fast as the local search algorithm. We believe that 
this algorithm can be successfully applied to many constraint 
satisfaction problems especially when working with sound 
incomplete solutions is needed in general. 
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