Search results for: Wire Electric Discharge Machining (WEDM)
83 Mobile Assembly of Electric Vehicles: Decentralized, Low-Invest and Flexible
Authors: Achim Kampker, Kai Kreiskoether, Johannes Wagner, Sarah Fluchs
Abstract:
The growing speed of innovation in related industries requires the automotive industry to adapt and increase release frequencies of new vehicle derivatives which implies a significant reduction of investments per vehicle and ramp-up times. Emerging markets in various parts of the world augment the currently dominating established main automotive markets. Local content requirements such as import tariffs on final products impede the accessibility of these micro markets, which is why in the future market exploitation will not be driven by pure sales activities anymore but rather by setting up local assembly units. The aim of this paper is to provide an overview of the concept of decentralized assembly and to discuss and critically assess some currently researched and crucial approaches in production technology. In order to determine the scope in which complementary mobile assembly can be profitable for manufacturers, a general cost model is set up and each cost driver is assessed with respect to varying levels of decentralization. One main result of the paper is that the presented approaches offer huge cost-saving potentials and are thus critical for future production strategies. Nevertheless, they still need to be further exploited in order for decentralized assembly to be profitable for companies. The optimal level of decentralization must, however, be specifically determined in each case and cannot be defined in general.Keywords: Automotive assembly, e-mobility, production technology, small series assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147582 Measurement of Real Time Drive Cycle for Indian Roads and Estimation of Component Sizing for HEV using LABVIEW
Authors: Varsha Shah, Patel Pritesh, Patel Sagar, PrasantaKundu, RanjanMaheshwari
Abstract:
Performance of vehicle depends on driving patterns and vehicle drive train configuration. Driving patterns depends on traffic condition, road condition and driver behavior. HEV design is carried out under certain constrain like vehicle operating range, acceleration, decelerations, maximum speed and road grades which are directly related to the driving patterns. Therefore the detailed study on HEV performance over a different drive cycle is required for selection and sizing of HEV components. A simple hardware is design to measured velocity v/s time profile of the vehicle by operating vehicle on Indian roads under real traffic conditions. To size the HEV components, a detailed dynamic model of the vehicle is developed considering the effect of inertia of rotating components like wheels, drive chain, engine and electric motor. Using vehicle model and different Indian drive cycles data, total tractive power demanded by vehicle and power supplied by individual components has been calculated.Using above information selection and estimation of component sizing for HEV is carried out so that HEV performs efficiently under hostile driving condition. Complete analysis is carried out in LABVIEW.Keywords: BLDC motor, Driving cycle, LABVIEW Ultracapacitors, Vehicle Dynamics,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 390281 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157880 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period
Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych
Abstract:
In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.
Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94279 Resilient Manufacturing: Use of Augmented Reality to Advance Training and Operating Practices in Manual Assembly
Authors: L. C. Moreira, M. Kauffman
Abstract:
This paper outlines the results of an experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance (or work instructions) of highly customised and high-risk manual operations. The focus is on human operators’ training effectiveness and performance and the aim is to test if such technologies can support enhancing the knowledge retention levels and accuracy of task execution to improve health and safety (H&S). An AR enhanced assembly method is proposed and experimentally tested using a real industrial process as case study for electric vehicles’ (EV) battery module assembly. The experimental results revealed that the proposed method improved the training practices and performance through increases in the knowledge retention levels from 40% to 84%, and accuracy of task execution from 20% to 71%, when compared to the traditional paper-based method. The results of this research validate and demonstrate how emerging technologies are advancing the choice for manual, hybrid or fully automated processes by promoting the XR-assisted processes, and the connected worker (a vision for Industry 4 and 5.0), and supporting manufacturing become more resilient in times of constant market changes.
Keywords: Augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly 4.0, industry 5.0, smart training, battery assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38078 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.
Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59077 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316476 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications
Authors: M. Gómez-Gómez, M. E. Sánchez-Vergara
Abstract:
Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductor films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 eV to 1.55 eV for direct transitions and 1.29 eV to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values at lower voltages. The results obtained show that the semiconductor devices doped with allene compounds can be used in the manufacture of optoelectronic devices.
Keywords: Electrical properties, optical gap, phthalocyanine, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42175 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls
Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari
Abstract:
In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.Keywords: Pipe-Forming, Wall Thickness, Finite-element-method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298674 Exploring Communities of Practice through Public Health Walks for Nurse Education
Authors: Jacqueline P. Davies
Abstract:
Introduction: Student nurses must develop skills in observation, communication and reflection as well as public health knowledge from their first year of training. This paper will explain a method developed for students to collect their own findings about public health in urban areas. These areas are both rich in the history of old public health that informs the content of many traditional public health walks, but are also locations where new public health concerns about chronic disease are concentrated. The learning method explained in this paper enables students to collect their own data and write original work as first year students. Examples of their findings will be given. Methodology: In small groups, health care students are instructed to walk in neighbourhoods near to the hospitals they will soon attend as apprentice nurses. On their walks, they wander slowly, engage in conversations, and enter places open to the public. As they drift, they observe with all five senses in the real three dimensional world to collect data for their reflective accounts of old and new public health. They are encouraged to stop for refreshments and taste, as well as look, hear, smell, and touch while on their walk. They reflect as a group and later develop an individual reflective account in which they write up their deep reflections about what they observed on their walk. In preparation for their walk, they are encouraged to look at studies of quality of Life and other neighbourhood statistics as well as undertaking a risk assessment for their walk. Findings: Reflecting on their walks, students apply theoretical concepts around social determinants of health and health inequalities to develop their understanding of communities in the neighbourhoods visited. They write about the treasured historical architecture made of stone, bronze and marble which have outlived those who built them; but also how the streets are used now. The students develop their observations into thematic analyses such as: what we drink as illustrated by the empty coke can tossed into a now disused drinking fountain; the shift in home-life balance illustrated by streets where families once lived over the shop which are now walked by commuters weaving around each other as they talk on their mobile phones; and security on the street, with CCTV cameras placed at regular intervals, signs warning trespasses and barbed wire; but little evidence of local people watching the street. Conclusion: In evaluations of their first year, students have reported the health walk as one of their best experiences. The innovative approach was commended by the UK governing body of nurse education and it received a quality award from the nurse education funding body. This approach to education allows students to develop skills in the real world and write original work.
Keywords: Education, innovation. nursing, urban.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172273 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States
Authors: Ashish Saini, A.K. Saxena
Abstract:
The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161572 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107571 Vibration Analysis of a Solar Powered UAV
Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg
Abstract:
This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to predict the relative response magnitudes and frequencies at various wing locations of vibration induced power generators (magnet in coil) excited by gust and/or control surface pulse-decays used to help power the flight of the electric UAV. A Fluid Structure Interaction (FSI) study was performed in order to ascertain pertinent design stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is on range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range from 1.04 to 1.23 kPa corresponding to velocity magnitudes in range of 22 to 66 m/s.Keywords: ANSYS, finite element, FSI, UAV, vibrations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 275270 Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors
Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar
Abstract:
Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.
Keywords: Electrophoretic deposition, graphene oxide, electrical conductivity, electro-optical devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97069 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions
Authors: Cheng-Chi Yu, Chi-Shiun Chiou
Abstract:
This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.Keywords: Plug-in hybrid power system, fuel economy, performance, continuous variable transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128968 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
Authors: Juliana A. Galhardi, Daniel M. Bonotto
Abstract:
Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.Keywords: Radon, radium, acid mine drainage, coal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205067 Projections of Climate Change in the Rain Regime of the Ibicui River Basin
Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi
Abstract:
The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.
Keywords: Climate change, hydrological potential, precipitation, mitigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107666 Modeling of Fluid Flow in 2D Triangular, Sinusoidal, and Square Corrugated Channels
Authors: Abdulbasit G. A. Abdulsayid
Abstract:
The main focus of the work was concerned with hydrodynamic and thermal analysis of the plate heat exchanger channel with corrugation patterns suggested to be triangular, sinusoidal, and square corrugation. This study was to numerically model and validate the triangular corrugated channel with dimensions/parameters taken from open literature, and then model/analyze both sinusoidal, and square corrugated channel referred to the triangular model. Initially, 2D modeling with local extensive analysis for triangular corrugated channel was carried out. By that, all local pressure drop, wall shear stress, friction factor, static temperature, heat flux, Nusselt number, and surface heat coefficient, were analyzed to interpret the hydrodynamic and thermal phenomena occurred in the flow. Furthermore, in order to facilitate confidence in this model, a comparison between the values predicted, and experimental results taken from literature for almost the same case, was done. Moreover, a holistic numerical study for sinusoidal and square channels together with global comparisons with triangular corrugation under the same condition, were handled. Later, a comparison between electric, and fluid cooling through varying the boundary condition was achieved. The constant wall temperature and constant wall heat flux boundary conditions were employed, and the different resulted Nusselt numbers as a consequence were justified. The results obtained can be used to come up with an optimal design, a 'compromise' between heat transfer and pressure drop.
Keywords: Corrugated Channel, CFD, Heat Exchanger, Heat Enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317865 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: Current track velocities, Gymea Bay, surface sediments, trace elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210864 Improvement of Gas Turbine Performance Test in Combine Cycle
Authors: M. Khosravy-el-Hossani, Q. Dorosti
Abstract:
One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.Keywords: Gas turbine, Performance test code, Combined cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 299063 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.
Keywords: Climate change, solar radiation, energy utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99462 Hybrid Energy Harvesting System with Energy Storage Management
Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia
Abstract:
In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.
Keywords: Supercapacitors, energy storage, electronic overvoltage protection, energy harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861 Numerical Modal Analysis of a Multi-Material 3D-Printed Composite Bushing and Its Application
Authors: Paweł Żur, Alicja Żur, Andrzej Baier
Abstract:
Modal analysis is a crucial tool in the field of engineering for understanding the dynamic behavior of structures. In this study, numerical modal analysis was conducted on a multi-material 3D-printed composite bushing, which comprised a polylactic acid (PLA) outer shell and a thermoplastic polyurethane (TPU) flexible filling. The objective was to investigate the modal characteristics of the bushing and assess its potential for practical applications. The analysis involved the development of a finite element model of the bushing, which was subsequently subjected to modal analysis techniques. Natural frequencies, mode shapes, and damping ratios were determined to identify the dominant vibration modes and their corresponding responses. The numerical modal analysis provided valuable insights into the dynamic behavior of the bushing, enabling a comprehensive understanding of its structural integrity and performance. Furthermore, the study expanded its scope by investigating the entire shaft mounting of a small electric car, incorporating the 3D-printed composite bushing. The shaft mounting system was subjected to numerical modal analysis to evaluate its dynamic characteristics and potential vibrational issues. The results of the modal analysis highlighted the effectiveness of the 3D-printed composite bushing in minimizing vibrations and optimizing the performance of the shaft mounting system. The findings contribute to the broader field of composite material applications in automotive engineering and provide valuable insights for the design and optimization of similar components.
Keywords: 3D printing, composite bushing, modal analysis, multi-material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6760 Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production
Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert
Abstract:
In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.Keywords: Research and development, technology and Innovation, lithium-ion-battery production, load carrier development process, cost valuation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227759 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.
Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324758 Modeling and Simulation of Overcurrent and Earth Fault Relay with Inverse Definite Minimum Time
Authors: Win Win Tun, Han Su Yin, Ohn Zin Lin
Abstract:
Transmission networks are an important part of an electric power system. The transmission lines not only have high power transmission capacity but also they are prone of larger magnitudes. Different types of faults occur in transmission lines such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phases (L-L-L) fault. These faults are needed to be cleared quickly in order to reduce damage caused to the system and they have high impact on the electrical power system equipment’s which are connected in transmission line. The main fault in transmission line is L-G fault. Therefore, protection relays are needed to protect transmission line. Overcurrent and earth fault relay is an important relay used to protect transmission lines, distribution feeders, transformers and bus couplers etc. Sometimes these relays can be used as main protection or backup protection. The modeling of protection relays is important to indicate the effects of network parameters and configurations on the operation of relays. Therefore, the modeling of overcurrent and earth fault relay is described in this paper. The overcurrent and earth fault relays with standard inverse definite minimum time are modeled and simulated by using MATLAB/Simulink software. The developed model was tested with L-G, L-L-G, L-L and L-L-L faults with various fault locations and fault resistance (0.001Ω). The simulation results are obtained by MATLAB software which shows the feasibility of analysis of transmission line protection with overcurrent and earth fault relay.
Keywords: Transmission line, overcurrent and earth fault relay, standard inverse definite minimum time, various faults, MATLAB Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99557 Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.
Keywords: Gate tunneling current, analytical model, gate dielectrics, non uniform poly gate doping, MOSFET, fringing field effect and image charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173456 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System
Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva
Abstract:
Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).
Keywords: Energy storage, power distribution system, solar generator, voltage level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83055 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes
Authors: Anubha Kaushik, Raman Preet
Abstract:
Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.Keywords: Distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93954 Evaluation of Water Quality of the Beshar River
Authors: Fardin Boustani, Mohammah Hosein Hojati, Masoud Hashemi
Abstract:
The Beshar River is one aquatic ecosystem, which is located next to the city of Yasuj in southern Iran. The Beshar river has been contaminated by industrial factories such as effluent of sugar factory, agricultural and other activities in this region such as, Imam Sajjad hospital, drainage from agricultural farms, Yasuj urban surface runoff and effluent of wastewater treatment plants ,specially Yasuj waste water treatment plant. In order to evaluate the effects of these pollutants on the quality of the Beshar river, five monitoring stations were selected along its course. The first station is located upstream of Yasuj near the Dehnow village; stations 2 to 4 are located east, south and west of city; and the 5th station is located downstream of Yasuj. Several water quality parameters were sampled. These include pH, dissolved oxygen, biological oxygen demand (BOD), temperature, conductivity, turbidity, total dissolved solids and discharge or flow measurements. Water samples from the five stations were collected and analyzed to determine the following physicochemical parameters: EC, pH, T.D.S, T.H, No2, DO, BOD5, COD during 2008 to 2010. The study shows that the BOD5 value of station 1 is at a minimum (1.7 ppm) and increases downstream from stations 2 to 4 to a maximum (11.6 ppm), and then decreases at station 5. The DO values of station 1 is a maximum (8.45 ppm), decreases downstream to stations 2 - 4 which are at a minimum (3.1 ppm), before increasing at station 5. The amount of BOD and TDS are highest at the 4th station and the amount of DO is lowest at this station, marking the 4th station as more highly polluted than the other stations .This study shows average amount of the water quality parameters in first year of sampling (2008) have had a better quality relation to third year in 2010 because of recent drought in this region and pollutant increasing .As the Beshar river path after 5th station goes through the mountain area with more slope and flow velocity ,so the physicochemical parameters improve at the 5th station due to pollutant degradation and dilution. Finally the point and nonpoint pollutant sources of Beshar river were determined and compared to the monitoring results.Keywords: Beshar river, physicochemical parameter, waterpollution, water quality, Yasuj
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651