Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: Radon, radium, acid mine drainage, coal

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100903

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048

References:


[1] F. A. Balogun, C. E. Mokobiab, M. K Fasasia and F. O. Ogundarec, “Natural radioactivity associated with bituminous coal mining in Nigeria”, Nuclear Instruments and Methods in Physics Research, vol. 505, pp. 444–448, 2003.
[2] D. A. Fungaro and J. C. Izidoro, “Remediação da drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão”, Quim. Nova, vol. 29, no. 4, p. 735-740, 2006.
[3] United States Environmental Protection Agency (USEPA), “Office of Solid Waste: Human health and environmental damages from mining and mineral processing wastes”, USEPA: Washington, 1995.
[4] H. M. Fernandes, M. A. Pires do Rio, L. H. S. Veiga and E. C. S. Amaral, “Environmental radiological problems associated to nonuranium mining and milling industries”, in 4° Encontro Brasileiro sobre Aplicações Nucleares. Poços de Caldas, 1997.
[5] G. H. Berghorn and G. R. Hunzeker, “Passive Treatment Alternatives for Remediating Abandoned Mine Drainage”, Remediation Journal, vol. 11, no. 3, pp. 111–127, 2001.
[6] T. Arnold, N. Baumann, E. Krawczyk-Bärsch, S. Brockmann, U. Zimmermann, U. Jenk and S. Weib, “Identification of the uranium speciation in an underground acid mine drainage environment”, Geochimica et Cosmochimica Acta, vol. 75, pp. 2200–2212, 2011.
[7] A. Al-Hashimi, G. J. Evans and B. Cox, “Aspects of the permanent storage of uranium tailings”, Water, Air, and Soil Pollution, vol. 88, pp. 83-92, 1996.
[8] M. Flues, I. M. C. Camargo, P. S.C. Silva and B. P. Mazzilli, “Radioactivity of coal and ashes from Figueira coal power plant in Brazil”, Journal of Radioanalytical and Nuclear Chemistry, vol. 270, no.3, pp. 597–602, 2006.
[9] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), “Sources, Effects and Risks of Ionizing Radiation”, United Nation: New York, 1988.
[10] V. P. Campaner, “Dispersão geoquímica elementar e isotópica na atmosfera e no solo em área com atividade minerária e termoelétrica a carvão”, Universidade Estadual de Campinas: Campinas, 2013.
[11] International Atomic Energy Agency (IAEA), “The environmental behavior of radium”, IAEA: Vienna, 1990.
[12] United States Environmental Protection Agency (USEPA), “Radon in drinking water health risk reduction and cost analysis”, USEPA: Washington, 1999.
[13] World Health Organization (WHO), “Guidelines for drinking water quality”, 4th ed., WHO Press: Geneva, 2011.
[14] World Health Organization (WHO), “Guidelines for drinking water quality”, 3rd ed., WHO Press: Geneva, 2006.
[15] M. S. Baxter, “Environmental radioactivity: a perspective on industrial contributions”. IAEA Bulletin, v. 35, n. 2, p. 33–38, 1993.
[16] L. H. S. Veiga, V. Melo, S. Koifman and E. C. S. Amaral, “High radon exposure in a Brazilian underground coal mine”, J. Radiol. Prot., vol. 24, pp. 295–305, 2004.
[17] M. A. Iritani and S. Ezaki, “As águas subterrâneas do Estado de São Paulo”, Secretaria do Estado de Meio Ambiente: São Paulo, 2008.
[18] E. J. Milani, “Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gonduana Sul- Ocidental”, Universidade Federal do Rio Grande do Sul: Porto Alegre, 1997.
[19] E. J. Milani, J. H. G. Melo, P. A. Souza, L. A. Fernandes and A. B Franca, “Bacia do Paraná”, Boletim Geociências da Petrobrás, vol. 15, no. 2, pp. 265-287, 2007.
[20] M. S. S. Shuqair, “Estudo da contaminação do solo e água subterrânea por elementos tóxicos originados dos rejeitos das minas de carvão de Figueira no Estado do Paraná”, Uiversidade de São Paulo, IPEN: São Paulo, 2002.
[21] L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti and J. H. Gonçalves, “Geologia, Tectônica e Recursos Minerais do Brasil”, CPRM: Brasília, 2003.
[22] A. A. Zacharias and M. L. Assine, “Modelo de preenchimento de vales incisos por associações de fáceis estuarinas, Formação Rio Bonito no Norte do Estado do Paraná”, Revista Brasileira de Geociências, vol. 35, no. 4, pp. 573-583, 2005.
[23] Agência Nacional de Energia Elétrica (ANEEL), “A Situação da Produção de Carvão Mineral no Estado do Paraná em Relação a Nota Técnica 034/2011”. ANEEL, Curitiba, 2011.
[24] HACH, “Water Analysis Handbook”, Ed. Hach Company: Colorado, 1992.
[25] Genitron, “Alpha Guard PQ2000/MC50 - Multiparameter Radon Monitor”, Genitron Instruments: Frankfurt, 2000.