Optimization the Conditions of Electrophoretic Deposition Fabrication of Graphene-Based Electrode to Consider Applications in Electro-Optical Sensors
Authors: Sepehr Lajevardi Esfahani, Shohre Rouhani, Zahra Ranjbar
Abstract:
Graphene has gained much attention owing to its unique optical and electrical properties. Charge carriers in graphene sheets (GS) carry out a linear dispersion relation near the Fermi energy and behave as massless Dirac fermions resulting in unusual attributes such as the quantum Hall effect and ambipolar electric field effect. It also exhibits nondispersive transport characteristics with an extremely high electron mobility (15000 cm2/(Vs)) at room temperature. Recently, several progresses have been achieved in the fabrication of single- or multilayer GS for functional device applications in the fields of optoelectronic such as field-effect transistors ultrasensitive sensors and organic photovoltaic cells. In addition to device applications, graphene also can serve as reinforcement to enhance mechanical, thermal, or electrical properties of composite materials. Electrophoretic deposition (EPD) is an attractive method for development of various coatings and films. It readily applied to any powdered solid that forms a stable suspension. The deposition parameters were controlled in various thicknesses. In this study, the graphene electrodeposition conditions were optimized. The results were obtained from SEM, Ohm resistance measuring technique and AFM characteristic tests. The minimum sheet resistance of electrodeposited reduced graphene oxide layers is achieved at conditions of 2 V in 10 s and it is annealed at 200 °C for 1 minute.
Keywords: Electrophoretic deposition, graphene oxide, electrical conductivity, electro-optical devices.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1314823
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968References:
[1] M. Sima, I. Enculescu, A. Sima, Adv. Mater. 5, 441 (2011).
[2] Q. Mei, K. Zhang, Chem.Commun. 46, 7319 (2010).
[3] Y. Pang, Y. Cui, Micro & Nanoletters 7, 608 (2012).
[4] H. Kautsky, Trans Faraday Soc. 35, 216 (1939).
[5] K. Fan, Z. Guo, Chinese Physical Society 3, 252 (2013).
[6] H. S. Ramakrishna, K. S. Subrahmanyam, Micro & Nanoletters 45, 452 (2013).
[7] Y. Liu, Applied Surface Science 257, 5513 (2011).
[8] M. Ghazinejad, H. Hosseini, J. Reiber Kyle, Photonic and Phononic Properties of Engineered Nanostructures 8994, 277 (2015).
[9] M.V. Encinas, E. A. Lissi, Photochem Photobiol 37, 251 (1983).
[10] M. R. Eftink, fluorescence quenching theory and applications, (Lakowicz plenum press, Newyork, 1991), pp. 53-63.
[11] A. S. Holmes, Biophys. Chem. 48, 193 (1993).
[12] D. Daems, N. Boens, Eur Biophys. 17, 25 (1989).
[13] R. F. Jones, J. Chem. Phys. 54, 3360 (1971).
[14] R. F. Steiner, E. P. Kirby, J. Chem. Phys. 73, 4130 (1969).
[15] R. S. Swathi, K. L. Sebastian, J. Chem. Phys. 130, 86101 (2009).
[16] R. S. Swathi, K. L. Sebastian, J.Chem.Phys. 129 (2008).
[17] P. O. Huang, J. liu, Small 8, 977 (2012).
[18] J. Kim, L. J. Cote, J. Chem. Phys 132, 260 (2010).
[19] X. Wang, Adv. Funct. Mat. 20, 3967 (2010).
[20] X. Zhu, Y. Shen, Chem.Common. 51, 10002 (2015).
[21] J. Balapanuru, J. X. Yang, Angew. Chem. 49, 6549 (2010).
[22] Y. Zhau, X. Gang, Sensors and Actuators B: Chemical 231, 324 (2016).
[23] S. Lajevardi Esfahani, Z. Ranjbar, S. Rastegar, Prog. Org. Coat. 77, 1264 (2014).
[24] S. Lajevardi Esfahani, Z. Ranjbar, S. Rastegar, J. Color. Sci. Tech. 8, 119 (2013).
[25] S. Lajevardi Esfahani, Z. Ranjbar, S. Rastegar, J. Prog. Color, Colorants, Coatings. 7, 187 (2014).
[26] K. Rana, J. Singh, J. H. Ahn, J. Mater. Chem. C 2, 2646 (2014).
[27] S. Seraj, Z. Ranjbar, A. Jannesari, Prog. Org. Coat. 77, 1735 (2014).
[28] D. Joseph, R. M. Ilhan, A. Aksay, Chem. Rev. 114, 6323 (2014).
[29] T. Chen, W. Hu, J. Song, G. H. Guai, C. M. Li, Adv. Funct. Mater. 22, 5245 (2012).
[30] E. Morales-Narvaez, A. Merkoci, Adv. Mater.24, 3298 (2012).