Search results for: compressive strength
329 Aerodynamic Models for the Analysis of Vertical Axis Wind Turbines (VAWTs)
Authors: T. Brahimi, F. Saeed, I. Paraschivoiu
Abstract:
This paper details the progress made in the development of the different state-of-the-art aerodynamic tools for the analysis of vertical axis wind turbines including the flow simulation around the blade, viscous flow, stochastic wind, and dynamic stall effects. The paper highlights the capabilities of the developed wind turbine aerodynamic codes over the last thirty years which are currently being used in North America and Europe by Sandia Laboratories, FloWind, IMST Marseilles, and Hydro-Quebec among others. The aerodynamic codes developed at Ecole Polytechnique de Montreal, Canada, represent valuable tools for simulating the flow around wind turbines including secondary effects. Comparison of theoretical results with experimental data have shown good agreement. The strength of the aerodynamic codes based on Double-Multiple Stream tube model (DMS) lies in its simplicity, accuracy, and ability to analyze secondary effects that interfere with wind turbine aerodynamic calculations.
Keywords: Aerodynamics, wind turbines, VAWT, CARDAAV, Darrieus, dynamic stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600328 Mechanical Characterization of Mango Peel Flour and Biopolypropylene Composites Compatibilized with PP-g-IA
Authors: J. Gomez-Caturla, L. Quiles-Carrillo, J. Ivorra-Martinez, D. Garcia-Garcia, R. Balart
Abstract:
The present work reports on the development of wood plastic composites based on biopolypropylene (BioPP) and mango peel flour (MPF) by extrusion and injection molding processes. PP-g-IA and dicumyl peroxide (DCP) have been used as a compatibilizer and as a free radical initiator for reactive extrusion, respectively. Mechanical and morphological properties have been characterized in order to study the compatibility of the blends. The obtained results showed that DCP and PP-g-IA improved the stiffness of BioPP in terms of elastic modulus. Moreover, they positively increased the tensile strength and elongation at break of the blends in comparison with the sample that only had BioPP and MPF on its composition, improving the affinity between both compounds. DCP and PP-g-IA even seem to have certain synergy, which was corroborated through Field Emission Scanning Electron Microscopy (FESEM) analysis. Images showed that the MPF particles had greater adhesion to the polymer matrix when PP-g-IA and DCP were added. This effect was more intense when both elements were added, observing an almost inexistent gap between MPF particles and the BioPP matrix.
Keywords: Biopolypropylene, compatibilization, mango peel flour, wood plastic composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396327 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects
Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour
Abstract:
One of the main problems of design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnels projects in which there is a number of tunnels and different professional teams involved. In this regard, a comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, an applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate and so forth can be calculated and reported in a standard format.
Keywords: Engineering geology, rock mass classification, rock mechanic, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122326 Research of the Behavior of Solar Module Frame Installed by Solar Clamping System by Finite Element Method
Authors: Li-Chung Su, Chia-Yu Chen, Tzu-Yuan Lai, Sheng-Jye Hwang
Abstract:
Mechanical design of the thin-film solar framed module and mounting system is important to enhance module reliability and to increase areas of applications. The stress induced by different mounting positions played a main role controlling the stability of the whole mechanical structure. From the finite element method, under the pressure from the back of module, the stress at Lc (center point of the Long frame) increased and the stresses at Center, Corner and Sc (center point of the Short frame) decreased while the mounting position was away from the center of the module. In addition, not only the stress of the glass but also the stress of the frame decreased. Accordingly it was safer to mount in the position away from the center of the module. The emphasis of designing frame system of the module was on the upper support of the Short frame. Strength of the overall structure and design of the corner were also important due to the complexity of the stress in the Long frame.Keywords: Finite element method, Framed module, Mountingposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710325 Effect of UV-Treatment on Properties of Biodegradable Film From Rice Starch
Authors: Nawapat Detduangchan, Thawien Wittaya
Abstract:
Photo-crosslinked rice starch-based biodegradable films were prepared by casting film-solution on leveled trays and ultra violet (UV) irradiation was applied for 10 minute. The effect of the content (3%, 6% and 9 wt. %)of photosensitiser (sodium benzoate) on mechanical properties, water vapor permeability (WVP) and structural properties of rice starch films were investigated. The tensile strength increased while elongation at break and water resistance properties of rice starch films decreased with addition and increasing content of photosensitiser. The % crystallinity of rice starch films were decreased when the content of photosensitiser increased and UV were applied. The results showed that the carboxylate group band of sodium benzoate was found in the FTIR spectrum of rice starch films and found that incorporation of 6% of photosensitiser into the films showed a higher absorption band of resulted films. This result pointed out the highest interaction between starch molecules was occurred.Keywords: Biodegradable film, Rice starch, UV treatment, Photosensitiser, Photo-crosslink
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507324 Experimental Investigation on Cold-formed Steel Wall Plate System
Authors: A. L. Y. Ng, W. H. Hii
Abstract:
A series of tests on cold-formed steel (CFS) wall plate system subjected to uplift force at the mid span of the wall plate is presented. The aim of the study was to study the behaviour and identify the modes of failure of CFS wall plate system. Two parameters were considered in these studies: 1) different dimension of U-bracket at the supports and 2) different sizes of lipped C-channel. The lipped C-channels used were C07508, C07512 and C10012. The dimensions of the leg of U-bracket were 50x35 mm and 50x60 mm respectively, where 25 mm clearance was provided to the connections for specimens with clearance. Results show that specimens with and without clearance experienced the same mode of failure. Failure began with the yielding of the connectors followed by distortional buckling of the wall plate. However, when C075 sections were used as wall plate, the system behaved differently. There was a large deformation in the wall plate and failure began in the distortional buckling of the wall plate followed by bearing of the connecting plates at the supports (U-bracket). The ultimate strength of the system also decreased dramatically when C075 sections were used.
Keywords: Cold-formed steel, wall plate system, distortional buckling, full scale laboratory test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196323 Microstructure and Mechanical Properties of Mg-Zn Alloys
Authors: Young Sik Kim, Tae Kwon Ha
Abstract:
Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys with Zn contents from 6 to 10 weight percent was investigated in this study. Through calculation of phase equilibria of Mg-Zn alloys, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as temperatures from 300 to 400oC, where supersaturated solid solution can be obtained. Solid solution treatment of Mg-Zn alloys was successfully conducted at 380oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs. By addition of Zn by 10 weight percent, hardness and strength were enhanced.Keywords: Mg-Zn alloy, Heat treatment, Microstructure, Mechanical properties, Hardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367322 Stress Analysis of Spider Gear Using Structural Steel on ANSYS
Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood
Abstract:
Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.
Keywords: Differential, spider gear, ANSYS, structural steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071321 Experimental Studies on the Mechanical Property of Laminated Bamboo in Thailand
Authors: S. Talabgaew, V. Laemlaksakul
Abstract:
A new generation product made from bamboo strips, known as laminated bamboo, has gained importance. The objective of this research was to experiment the effect of three factors on the mechanical property of laminated bamboo. The interested factors for experimental design were (A) four bamboo species, namely Bambusa blumeana Schultes (Pai See Suk), Dendrocalamus asper Backer (Pai Tong), Dendrocalamus hamiltonii Nees (Pai Hok) and Dendrocalamus sericeus Munro (Pai Sang Mon), (B) two types of glue adhesive, polyvinyl acetate emulsion (PVAC) fortified with urea-formaldehyde (UF) and urea-formaldehyde (UF) to make parallel-oriented bamboo strips laminates and (C) glue weight per strip area, 150 g/m2 and 190 g/m2. Experimental results showed that Dendrocalamus asper Backer (Pai Tong) and Dendrocalamus sericeus Munro (Pai Sang Mon) were best used for manufacturing due to their highest MOR and MOE. The amount of glue weight 150 g/m2 yielded higher MOR and MOE than the amount of glue weight 190 g/m2. At the conclusion, the laminated bamboo manufacturers can benefit from this research in order to select right materials according to strength, cost and accessibility.Keywords: Laminated Bamboo, Mechanical Property, 3-WayANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093320 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.
Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415319 GSM-Based Approach for Indoor Localization
Authors: M.Stella, M. Russo, D. Begušić
Abstract:
Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.Keywords: Indoor positioning, WLAN, GSM, RSS, location fingerprints, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2747318 Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes
Authors: Md F. Mina, Mohammad D.H. Beg, Muhammad R. Islam, Abu K. M. M. Alam A. Nizam, Rosli M. Younus
Abstract:
In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%).Keywords: Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603317 Laser Beam Forming of 3 mm Steel Plate and the Evolving Properties
Authors: Stephen Akinlabi, Mukul Shukla, Esther Akinlabi, Marwala Tshilidzi
Abstract:
This paper reports the evolving properties of a 3 mm low carbon steel plate after Laser Beam Forming achieve this objective, the chemical analyse material and the formed components were carried thereafter both were characterized through microhardness profiling microstructural evaluation and tensile testing. showed an increase in the elemental concentration of the component when compared to the as received attributed to the enhancement property of the LBF process Ultimate Tensile Strength (UTS) and the Vickers the formed component shows an increase when compared to the as received material, this was attributed to strain hardening and grain refinement brought about by the LBF process. The microstructure of the as received steel consists of equiaxed ferrit that of the formed component exhibits elongated orming process (LBF). To es of the as received out and compared; profiling, The chemical analyses formed material; this can be process. The microhardness of ferrite and pearlite while grains.
Keywords: Laser beam forming, deformation , deformation, elongated grains
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893316 Construction of Large Scale UAVs Using Homebuilt Composite Techniques
Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp
Abstract:
The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.
Keywords: Composite aircraft, homebuilding, unmanned aerial system, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817315 Investigation on an Innovative Way to Connect RC Beam and Steel Column
Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil
Abstract:
An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.
Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5309314 Realignment of f-actin Cytoskeleton in Osteocytes after Mechanical Loading
Authors: R. S. A. Nesbitt, J. Macione, E. Babollah, B. Adu-baffour, S. P. Kotha
Abstract:
F-actin fibrils are the cytoskeleton of osteocytes. They react in a dynamic manner to mechanical loading, and strength and reposition their efforts to reinforce the cells structure. We hypothesize that f-actin is temporarly disrupted after loading and repolymerizes in a new orientation to oppose the applied load. In vitro studies are conducted to determine f-actin disruption after varying mechanical stimulus parameters that are known to affect bone formation. Results indicate that the f-actin cytoskeleton is disrupted in vitro as a function of applied mechanical stimulus parameters and that the f-actin bundles reassemble after loading induced disruption within 3 minutes after cessation of loading. The disruption of the factin cytoskeleton depends on the magnitude of stretch, the numbers of loading cycles, frequency, the insertion of rest between loading cycles and extracellular calcium. In vivo studies also demonstrate disruption of the f-actin cytoskeleton in cells embedded in the bone matrix immediately after mechanical loading. These studies suggest that adaptation of the f-actin fiber bundles of the cytoskeleton in response to applied loads occurs by disruption and subsequent repolymerization.Keywords: Mechanical loading of osteocytes, f-actin cytoskeleton, disruption, re-polymerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561313 The Development of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications
Authors: Mohamed R. Mhereeg
Abstract:
The paper investigates the feasibility of constructing a software multi-agent based monitoring and classification system and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. The agents function autonomously to provide continuous and periodic monitoring of excels spreadsheet workbooks. Resulting in, the development of the MultiAgent classification System (MACS) that is in compliance with the specifications of the Foundation for Intelligent Physical Agents (FIPA). However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies that are Windows Communication Foundation (WCF) services, Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW that is in order to satisfy the monitoring and classification of the multiple developer aspect. ODM was used to automate the classification phase of MACS.
Keywords: Autonomous, Classification, MACS, Multi-Agent, SOA, WCF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589312 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures
Authors: Anas M. Fares, A. Touqan
Abstract:
A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457311 Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber
Authors: M. S. Hosseini, M. Tazzoli-Shadpour, I. Amjadi, A. A. Katbab, E. Jaefargholi-Rangraz
Abstract:
Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.
Keywords: Biocompatibility, Composite, Organomodified- Nanoclay, Proliferation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940310 Designing and Manufacturing High Voltage Pulse Generator with Adjustable Pulse and Monitoring Current and Voltage: Food Processing Application
Authors: H. Mirzaee, A. Pourzaki
Abstract:
Using strength Pulse Electrical Field (PEF) in food industries is a non-thermal process that can deactivate microorganisms and increase penetration in plant and animals tissues without serious impact on food taste and quality. In this paper designing and fabricating of a PEF generator has been presented. Pulse generation methods have been surveyed and the best of them selected. The equipment by controller set can generate square pulse with adjustable parameters such as amplitude 1-5kV, frequency 0.1-10Hz, pulse width 10-100s, and duty cycle 0-100%. Setting the number of pulses, and presenting the output voltage and current waveforms on the oscilloscope screen are another advantages of this equipment. Finally, some food samples were tested that yielded the satisfactory results. PEF applying had considerable effects on potato, banana and purple cabbage. It caused increase Brix factor from 0.05 to 0.15 in potato solution. It is also so effective in extraction color material from purple cabbage. In the last experiment effects of PEF voltages on color extraction of saffron scum were surveyed (about 6% increasing yield).Keywords: PEF, Capacitor, Switch, IGBT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4215309 A New Fuzzy Decision Support Method for Analysis of Economic Factors of Turkey's Construction Industry
Authors: R. Tur, A. Yardımcı
Abstract:
Imperfect knowledge cannot be avoided all the time. Imperfections may have several forms; uncertainties, imprecision and incompleteness. When we look to classification of methods for the management of imperfect knowledge we see fuzzy set-based techniques. The choice of a method to process data is linked to the choice of knowledge representation, which can be numerical, symbolic, logical or semantic and it depends on the nature of the problem to be solved for example decision support, which will be mentioned in our study. Fuzzy Logic is used for its ability to manage imprecise knowledge, but it can take advantage of the ability of neural networks to learn coefficients or functions. Such an association of methods is typical of so-called soft computing. In this study a new method was used for the management of imprecision for collected knowledge which related to economic analysis of construction industry in Turkey. Because of sudden changes occurring in economic factors decrease competition strength of construction companies. The better evaluation of these changes in economical factors in view of construction industry will made positive influence on company-s decisions which are dealing construction.
Keywords: Fuzzy logic, decision support systems, construction industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636308 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.
Keywords: Localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523307 Effect of Retained Austenite Stability in Corrosion Mechanism of Dual Phase High Carbon Steel
Authors: W. Handoko, F. Pahlevani, V. Sahajwalla
Abstract:
Dual-phase high carbon steels (DHCS) are commonly known for their improved strength, hardness, and abrasive resistance properties due to co-presence of retained austenite and martensite at the same time. Retained austenite is a meta-stable phase at room temperature, and stability of this phase governs the response of DHCS at different conditions. This research paper studies the effect of RA stability on corrosion behaviour of high carbon steels after they have been immersed into 1.0 M NaCl solution for various times. For this purpose, two different steels with different RA stabilities have been investigated. The surface morphology of the samples before and after corrosion attack was observed by secondary electron microscopy (SEM) and atomic force microscopy (AFM), along with the weight loss and Vickers hardness analysis. Microstructural investigations proved the preferential attack to retained austenite phase during corrosion. Hence, increase in the stability of retained austenite in dual-phase steels led to decreasing the weight loss rate.Keywords: High carbon steel, austenite stability, atomic force microscopy, corrosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385306 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: one is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: Adhesive joints, CFRP, VARTM, resin transfer molding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870305 Effect of Copper on Microstructure and Mechanical Properties of Construction Steel
Authors: Olatunde I. Sekunowo, Stephen I. Durowaye, Oluwashina P. Gbenebor
Abstract:
Copper being one of the major intrinsic residual impurities in steel possesses the tendency to induce severe microstructural distortions if not controlled within certain limits. Hence, this paper investigates the effect of this element on the mechanical properties of construction steel with a view to ascertain its safe limits for effective control. The experiment entails collection of statistically scheduled samples of hot rolled profiles with varied copper concentrations in the range of 0.12-0.39 wt. %. From these samples were prepared standard test specimens subjected to tensile, impact, hardness and microstructural analyses. Results show a rather huge compromise in mechanical properties as the specimens demonstrated 54.3%, 74.2% and 64.9% reduction in tensile strength, impact energy and hardness respectively as copper content increases from 0.12 wt. % to 0.39 wt. %. The steel’s abysmal performance is due to the severe distortion of the microstructure occasioned by the development of incoherent complex compounds which weaken the pearlite reinforcing phase. It is concluded that the presence of copper above 0.22 wt. % is deleterious to construction steel performance.
Keywords: Construction steel, mechanical properties, processing method, trace elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5680304 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures
Authors: Viriyavudh Sim, Woo Young Jung
Abstract:
This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of increased temperature on the foam core. Failure mode under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its module elastic under the thermal influence. Increment of temperature is considered in static cases and only applied to core. Indeed, it is proven that the effect of temperature alters the mechanical properties of the entire panel system. Moreover, the rises of temperature result in a decrease in strength of the panel. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Therefore, by comparing difference type of core material, the variation can be reducing.Keywords: Buckling, contact length, foam core, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914303 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.
Keywords: Kevlar, needle temperature, Nomex, sewing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452302 Finite Element Assessment on Bond Behavior of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency, and stiffness on the fatigue life of the FRP-toconcrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898301 Empirical Exploration for the Correlation between Class Object-Oriented Connectivity-Based Cohesion and Coupling
Authors: Jehad Al Dallal
Abstract:
Attributes and methods are the basic contents of an object-oriented class. The connectivity among these class members and the relationship between the class and other classes play an important role in determining the quality of an object-oriented system. Class cohesion evaluates the degree of relatedness of class attributes and methods, whereas class coupling refers to the degree to which a class is related to other classes. Researchers have proposed several class cohesion and class coupling measures. However, the correlation between class coupling and class cohesion measures has not been thoroughly studied. In this paper, using classes of three open-source Java systems, we empirically investigate the correlation between several measures of connectivity-based class cohesion and coupling. Four connectivity-based cohesion measures and eight coupling measures are considered in the empirical study. The empirical study results show that class connectivity-based cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation depends highly on the cohesion and coupling measurement approaches.
Keywords: Object-oriented class, software quality, class cohesion measure, class coupling measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390300 Textile Dyeing with Natural Dye from Sappan Tree (Caesalpinia sappan Linn.) Extract
Authors: Ploysai Ohama, Nattida Tumpat
Abstract:
Natural dye extracted from Caesalpinia sappan Linn. was applied to a cotton fabric and silk yarn by dyeing process. The dyestuff component of Caesalpinia sappan Linn. was extracted using water and ethanol. Analytical studies such as UV–VIS spectrophotometry and gravimetric analysis were performed on the extracts. Brazilein, the major dyestuff component of Caesalpinia sappan Linn. was confirmed in both aqueous and ethanolic extracts by UV–VIS spectrum. The color of each dyed material was investigated in terms of the CIELAB (L*, a* and b*) and K/S values. Cotton fabric dyed without mordant had a shade of reddish-brown, while those post-mordanted with aluminum potassium sulfate, ferrous sulfate and copper sulfate produced a variety of wine red to dark purple color shades. Cotton fabric and silk yarn dyeing was studied using aluminum potassium sulfate as a mordant. The observed color strength was enhanced with increase in mordant concentration.
Keywords: Natural dyes, Plant materials, Dyeing, Mordant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5068