Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Characterization of Biodegradable Nanocomposites with Poly (Lactic Acid) and Multi-Walled Carbon Nanotubes

Authors: Md F. Mina, Mohammad D.H. Beg, Muhammad R. Islam, Abu K. M. M. Alam A. Nizam, Rosli M. Younus

Abstract:

In this study, structural, mechanical, thermal and electrical properties of poly (lactic acid) (PLA) nanocomposites with low-loaded (0-1.5 wt%) untreated, heat and nitric acid treated multiwalled carbon nanotubes (MWCNTs) were studied. Among the composites, untreated 0.5 wt % MWCNTs and acid-treated 1.0 wt% MWCNTs reinforced PLA show the tensile strength and modulus values higher than the others. These two samples along with pure PLA exhibit the stable orthorhombic α-form, whilst other samples reveal the less stable orthorhombic β-form, as demonstrated by X-ray diffraction study. Differential scanning calorimetry reveals the evolution of the mentioned different phases by controlled cooling and discloses an enhancement of PLA crystallization by nanotubes incorporation. Thermogravimetric analysis shows that the MWCNTs loaded sample degraded faster than PLA. Surface resistivity of the nanocomposites is found to be dropped drastically by a factor of 1013 with a low loading of MWCNTs (1.5 wt%).

Keywords: Crystallization, multi-walled carbon nanotubes, nanocomposites, Poly (lactic acid).

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081613

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607

References:


[1] S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi and M. S. Jhon. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly (methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24:1070-1073, 2003.
[2] N. Grossiord, J. Loos, O. Regev and C. E. Koning. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089-1099, 2006.
[3] R. Andrews and M. C. Weisenberger. Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8:31-37, 2004.
[4] Y. T. Sung, M. S. Han, K. H. Song, J. W. Jung, H. S. Lee, C. K. Kum, J. Joo and W. N. Kim. Rheological and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 47:4434- 4439, 2006.
[5] A. Maity and M . Biswas. Recent progress in conducting polymer, mixed polymer-inorganic hybrid nanocomposites. J Ind Eng Chem 12:311-351, 2006.
[6] N. Grossiord, J. Loos, C. E. Koning. Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15:2349-2352, 2005.
[7] S. S. Ray, S. Vaudreuil, A. Maazouz and M. Bousmina. Dispersion of multi-walled carbon nanotubes in biodegradable poly (butylene succinate) matrix. J Nanosci Nanotech 6:2191-2195, 2006.
[8] S. Vaudreuil, A. Labzour, S. S. Ray, K. E. Mabrouk and M. Bousmina. Dispersion characteristics and properties of poly (methyl methacrylate)/multi-walled carbon nanotubes nanocomposites. J Nanosci Nanotech 7:2349-2355, 2007.
[9] S. T. Kim, H. J. Choi and S. M. Hong. Bulk polymerized polystyrene in the presence of multiwalledcarbon nanotubes. Colloid Polym Sci 285:593-598, 2007.
[10] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. W. Han, L. S. Tan and J. B. Baek. In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites. Chem Mater 17:5057-5064, 2005.
[11] R. Andrews, D. Jacques, D. Qian and T. Rantell. Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35:1088-1017, 2002.
[12] M. Moniruzzaman and K. Winey. Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194-5205, 2006.
[13] Chin-San Wu, Hsin-Tzu Liao, Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites, Polymer 48, 4449-4458, 2007.
[14] B. Kumar, M. Castro and J.F. Feller. Poly (lactic acid)-multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors, Sensors and Actuators B 16, 621- 628, 2012.
[15] S. W. Ko, M. K. Hong, B. J. Park, R. K. Gupta, H. J. Choi, S. N. Bhattacharya, Morphological and rheological characterization of multiwalled carbon nanotube/PLA/PBAT blend nanocomposites, Polym. Bull. 63:125-134, 2009.
[16] Chen-Feng Kuana, Chia-Hsun Chena,_, Hsu-Chiang Kuana, Kun-Chang Lina, Chin-Lung Chiangb, Hsin-Chin Penga Multi-walled carbon nanotube reinforced poly (L-lactic acid) nanocomposites enhanced by water-crosslinking reaction, Journal of Physics and Chemistry of Solids 69, 1399-1402, 2008.
[17] A. Bhatia, R. K. Gupta, S. N. Bhattacharya, H. J. Choi. Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Australia Rheol J 19:125-131, 2007.
[18] T. M. Wu and M. F. Chiang. Fabrication and characterization of biodegradable poly (lactic acid)/ layered silicate nanocomposites. Polym Eng Sci 45:1615-1621, 2005.
[19] Michael B. Heaney. The Measurement, Instrumentation and Sensors Handbook, chapter Electrical Conductivity and Resistivity. CRC Press, 1999.
[20] Chin-San Wu, Hsin-Tzu Liao, Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48 4449-4458, 2007.
[21] M. A. Haque, M. F. Mina, A.K.M. M. Alam, M. J. Rahman, M. A. H. Bhuiyan, and T. Asano, Multi-Walled Carbon Nanotubes Reinforced Isotactic Polypropylene Nanocomposites: Enhancement of Crystallization and Mechanical, Thermal and Electrical Properties, Polymer Composites, 33, 1094-1104, 2012.
[22] W, Hoogsteen, A. R. Postema, Pennings AJ, Brinke GT. Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(Llactide) Fibers Macromolecules 1990; 23: 634-642.
[23] T. M. Wu, C. Y. Wu. Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: Preparation and characterization. Polym Degrad Stab; 91: 2198-2204, 2006.
[24] M. Pluta and A. Galeski. Crystalline and supermolecular structure of polylactide in relation to the crystallization method. J Appl Polym Sci; 86: 1386, 2002.
[25] P. V. Joseph, K. Joseph, C. K. S. Thomas Pillai, V. S. Prasad, G. Groeninckx and M. Sarkissova. The thermal and crystallization studies of short sisal fiber reinforced polypropylene composite. Composite Part A, 34(3), 253-266, 2003.
[26] Chen-Feng Kuana, Hsu-Chiang Kuana, Chen-Chi M. Mab, Chia-Hsun Chena Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites, Journal of Physics and Chemistry of Solids 69, 1395-1398, 2008.