Search results for: Ambient temperature
1607 An Experimental Study on Evacuated Tube Solar Collector for Heating of Air in India
Authors: Avadhesh Yadav, V.K. Bajpai
Abstract:
A solar powered air heating system using one ended evacuated tubes is experimentally investigated. A solar air heater containing forty evacuated tubes is used for heating purpose. The collector surface area is about 4.44 m2. The length and outer diameters of the outer glass tube and absorber tube are 1500, 47 and 37 mm, respectively. In this experimental setup, we have a header (heat exchanger) of square shape (190 mm x 190 mm). The length of header is 1500 mm. The header consists of a hollow pipe in the center whose diameter is 60 mm through which the air is made to flow. The experimental setup contains approximately 108 liters of water. Water is working as heat collecting medium which collects the solar heat falling on the tubes. This heat is delivered to the air flowing through the header pipe. This heat flow is due to natural convection and conduction. The outlet air temperature depends upon several factors along with air flow rate and solar radiation intensity. The study has been done for both up-flow and down-flow of air in header in similar weather conditions, at different flow rates. In the present investigations the study has been made to find the effect of intensity of solar radiations and flow rate of air on the out let temperature of the air with time and which flow is more efficient. The obtained results show that the system is highly effective for the heating in this region. Moreover, it has been observed that system is highly efficient for the particular flow rate of air. It was also observed that downflow configuration is more effective than up-flow condition at all flow rates due to lesser losses in down-flow. The results show that temperature differences of upper head and lower head, both of water and surface of pipes on the respective ends is lower in down-flow.
Keywords: air flow direction, Evacuated tube solar collector, solar air heating, solar thermal utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51961606 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON
Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup
Abstract:
Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.Keywords: Biomass, Gasification, Hydrogen, iCON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26081605 Estimating Spatial Disaggregation of Urban Thermal Responsiveness on Summer Diurnal Range with a Numerical Modeling Approach in Bangkok, Thailand
Authors: Manat Srivanit, Hokao Kazunori
Abstract:
Facing the concern of the population to its environment and to climatic change, city planners are now considering the urban climate in their choices of planning. The urban climate, representing different urban morphologies across central Bangkok metropolitan area (BMA), are used to investigates the effects of both the composition and configuration of variables of urban morphology indicators on the summer diurnal range of urban climate, using correlation analyses and multiple linear regressions. Results show first indicate that approximately 92.6% of the variation in the average maximum daytime near-surface air temperature (Ta) was explained jointly by the two composition variables of urban morphology indicators including open space ratio (OSR) and floor area ratio (FAR). It has been possible to determine the membership of sample areas to the local climate zones (LCZs) using these urban morphology descriptors automatically computed with GIS and remote sensed data. Finally result found the temperature differences among zones of large separation, such as the city center could be respectively from 35.48±1.04ºC (Mean±S.D.) warmer than the outskirt of Bangkok on average for maximum daytime near surface temperature to 28.27±0.21ºC for extreme event and, can exceed as 8ºC. A spatially disaggregation of urban thermal responsiveness map would be helpful for several reasons. First, it would localize urban areas concerned by different climate behavior over summer daytime and be a good indicator of urban climate variability. Second, when overlaid with a land cover map, this map may contribute to identify possible urban management strategies to reduce heat wave effects in BMA.
Keywords: Urban climate, Urban morphology, Local climate zone, Urban planning, GIS and remote sensing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24641604 An Analysis of Thermal Comfort for Indoor Environment of the New Assiut Housing in Egypt
Authors: Amr Sayed, Y. Hiroshi, T. Goto, N. Enteria, M. M. Radwan, M. Abdelsamei Eid
Abstract:
Climate considerations are essential dimensions in the assessment of thermal comfort and indoor environments inside Egyptian housing. The primary aim of this paper is to analyze the indoor environment of new housing in the new city of Assiut in the Southern Upper Egypt zone, in order to evaluate its thermal environment and determine the acceptable indoor operative temperatures. The psychrometric charts for ASHRAE Standard 55 and ACS used in this study would facilitate an overall representation of the climate in one of the hottest months in the summer season. This study helps to understand and deal with this problem and work on a passive cooling ventilation strategy in these contexts in future studies. The results that demonstrated the indoor temperature is too high, ranges between 31°C to 40°C in different natural ventilation strategies. This causes the indoor environment to be far from the optimum comfort operative temperature of ACS except when using air conditioners. Finally, this study is considered a base for developing a new system using natural ventilation with passive cooling strategies.
Keywords: Adaptive comfort standard (ACS), indoor environment, thermal comfort, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42401603 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement
Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu
Abstract:
Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties, which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8 and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4 and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall Stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.Keywords: Crumb rubber, dry process, low-density polyethylene, hot mix asphalt, wet process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47071602 DIAL Measurements of Vertical Distribution of Ozone at the Siberian Lidar Station in Tomsk
Authors: Oleg A. Romanovskii, Vladimir D. Burlakov, Sergey I. Dolgii, Olga V. Kharchenko, Alexey A. Nevzorov, Alexey V. Nevzorov
Abstract:
The paper presents the results of DIAL measurements of the vertical ozone distribution. The ozone lidar operate as part of the measurement complex at Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk (56.5ºN; 85.0ºE) and designed for study of the vertical ozone distribution in the upper troposphere–lower stratosphere. Most suitable wavelengths for measurements of ozone profiles are selected. We present an algorithm for retrieval of vertical distribution of ozone with temperature and aerosol correction during DIAL lidar sounding of the atmosphere. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. Results of lidar measurement at wavelengths of 299 and 341 nm agree with model estimates, which point to acceptable accuracy of ozone sounding in the 6–18 km altitude range.
Keywords: Lidar, ozone distribution, atmosphere, DIAL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12881601 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate
Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf
Abstract:
Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.
Keywords: Absorption chiller, control system, solar cooling, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791600 Improving TNT Curing Process by Using Infrared Camera
Authors: O. Srihakulung, Y. Soongsumal
Abstract:
Among the chemicals used for ammunition production, TNT (Trinitrotoluene) play a significant role since World War I and II. Various types of military weapon utilize TNT in casting process. However, the TNT casting process for warhead is difficult to control the cooling rate of the liquid TNT. This problem occurs because the casting process lacks the equipment to detect the temperature during the casting procedure This study presents the temperature detected by infrared camera to illustrate the cooling rate and cooling zone of curing, and demonstrates the optimization of TNT condition to reduce the risk of air gap occurred in the warhead which can result in the destruction afterward. Premature initiation of explosive-filled projectiles in response to set-back forces during gunfiring cause by casting defects. Finally the study can help improving the process of the TNT casting. The operators can control the curing of TNT inside the case by rising up the heating rod at the proper time. Consequently this can reduce tremendous time of rework if the air gaps occur and increase strength to lower elastic modulus. Therefore, it can be clearly concluded that the use of Infrared Cameras in this process is another method to improve the casting procedure.
Keywords: Infrared camera, TNT casting, warhead, curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651599 Distribution and Characterization of Thermal Springs in Northern Oman
Authors: Fahad Al Shidi, Reginald Victor
Abstract:
This study was conducted in Northern Oman to assess the physical and chemical characteristics of 40 thermal springs distributed in Al Hajar Mountains in northern Oman. Physical measurements of water samples were carried out in two main seasons in Oman (winter and summer 2019). Studied springs were classified into three groups based on water temperature, four groups based on water pH values and two groups based on conductivity. Ten thermal alkaline springs that originated in Ophiolite (Samail Napp) were dominated by high pH (> 11), elevated concentration of Cl- and Na+ ions, relatively low temperature and discharge ratio. Other springs in the Hajar Super Group massif recorded high concentrations of Ca2+ and SO2-4 ions controlled by rock dominance, geochemistry processes, and mineralization. There was only one spring which has brackish water with very high conductivity (5500 µs/cm) and Total Dissolved Solids and it is not suitable for irrigation purposes because of the high abundance of Na+, Cl−, and Ca2+ ions.
Keywords: Alkaline springs, geothermal, Hajar Super Group, Northern Oman, ophiolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6041598 DQ Analysis of 3D Natural Convection in an Inclined Cavity Using an Velocity-Vorticity Formulation
Abstract:
In this paper, the differential quadrature method is applied to simulate natural convection in an inclined cubic cavity using velocity-vorticity formulation. The numerical capability of the present algorithm is demonstrated by application to natural convection in an inclined cubic cavity. The velocity Poisson equations, the vorticity transport equations and the energy equation are all solved as a coupled system of equations for the seven field variables consisting of three velocities, three vorticities and temperature. The coupled equations are simultaneously solved by imposing the vorticity definition at boundary without requiring the explicit specification of the vorticity boundary conditions. Test results obtained for an inclined cubic cavity with different angle of inclinations for Rayleigh number equal to 103, 104, 105 and 106 indicate that the present coupled solution algorithm could predict the benchmark results for temperature and flow fields. Thus, it is convinced that the present formulation is capable of solving coupled Navier-Stokes equations effectively and accurately.
Keywords: Natural convection, velocity-vorticity formulation, differential quadrature (DQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711597 The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’
Authors: Wael M. Semida, P. Hadley, W. Sobeih, N. A. El-Sawah, M. A. S. Barakat
Abstract:
Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).
Keywords: Photoselective plastic films, thermic films, secondary metabolites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20781596 Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium
Authors: J.C. Umavathi
Abstract:
The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.
Keywords: Brownian motion and thermophoresis, Porous medium, Nanofluid, Natural convection, Thermal modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701595 The Investigation of Precipitation Conditions of Chevreul’s Salt
Authors: Turan Çalban, Fatih Sevim, Oral Laçin
Abstract:
In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.Keywords: Chevreul’s salt, copper sulphites, mixed-valence sulphite compounds, precipitating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161594 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731593 Thermodynamic Analysis of Activated Carbon- CO2 based Adsorption Cooling Cycles
Authors: Skander Jribi, Anutosh Chakraborty, Ibrahim I. El-Sharkawy, Bidyut Baran Saha, Shigeru Koyama
Abstract:
Heat powered solid sorption is a feasible alternative to electrical vapor compression refrigeration systems. In this paper, activated carbon (powder type Maxsorb and fiber type ACF-A10)- CO2 based adsorption cooling cycles are studied using the pressuretemperature- concentration (P-T-W) diagram. The specific cooling effect (SCE) and the coefficient of performance (COP) of these two cooling systems are simulated for the driving heat source temperatures ranging from 30 ºC to 90 ºC in terms of different cooling load temperatures with a cooling source temperature of 25 ºC. It is found from the present analysis that Maxsorb-CO2 couple shows higher cooling capacity and COP. The maximum COPs of Maxsorb-CO2 and ACF(A10)-CO2 based cooling systems are found to be 0.15 and 0.083, respectively. The main innovative feature of this cooling cycle is the ability to utilize low temperature waste heat or solar energy using CO2 as the refrigerant, which is one of the best alternative for applications where flammability and toxicity are not allowed.Keywords: Activated carbon, Adsorption cooling system, Carbon dioxide, Performance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36761592 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.
Keywords: Dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite, T-peel test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7321591 Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction
Authors: F. Ammari, M. Chenouf
Abstract:
Synthesis of gold nanoparticles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; various gold loading percentage 1, 2 and 5% were used for gold nanoparticles preparation. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in Na-montmorillonite were used as catalysts for the reduction of 4- nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirmed directly the gold nanoparticles formation. The XRD and N2 adsorption results showed the formation of gold nanoparticles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2% gold loading percentage. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4- nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Namontmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1%Au-Na-montmorillonite and within 3 min for 2%Au-Na-montmorillonite.Keywords: Chemical reduction, gold, montmorillonite, nanoparticles, 4-nitrophenol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111590 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate
Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes
Abstract:
In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).
Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21541589 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method
Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti
Abstract:
In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The red mud sample came from the Tayan mine, Indonesia, which contains high hematite (Fe2O3). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30-110 °C. Current density and temperature variations were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 11.8% recovery at a current density of 796 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.
Keywords: Alumina, electrochemical reduction, iron production, red mud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531588 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater
Authors: Bhausaheb L. Pangarkar, M.G. Sane
Abstract:
Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.Keywords: MD, ground water, seawater, AGMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24691587 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique
Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi
Abstract:
This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity ( ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.Keywords: Crystalline, CuAlS2, evaporation, resistivity, sulfurisation, thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551586 Development of an Internet of Things System for Smart Crop Production
Authors: O. M. Olanrewaju, F. O. Echobu, A. G. Adesoji, E. D. Ajik, J. N. Ndabula, S. Luka
Abstract:
Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. The Internet of Things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for NPK, soil temperature and soil moisture in a given soil at the time of test. In this implementation, a sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits performed adequately well, as the range of values obtained across the segments was within a very close range.
Keywords: Internet of things, soil nutrients, test kit, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671585 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation
Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo
Abstract:
Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.
Keywords: Particle size, RESS, solid oil particle, supercritical carbon dioxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9721584 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain
Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno
Abstract:
Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.Keywords: Degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761583 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)
Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria
Abstract:
The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.Keywords: Differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171582 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency
Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai
Abstract:
Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.
Keywords: Anila stove, biochar, soil conditioning materials, temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9521581 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance
Authors: Mert Tosun, Tuğba Tosun
Abstract:
The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.
Keywords: Heat exchanger, refrigerator, design of experiment, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6031580 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme
Authors: Ravi P. Agrahari
Abstract:
The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India.
This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production.
Keywords: Biogas, Green house chamber, organic material, solar intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20421579 Removal of Lead from Aqueous Solutions by Biosorption on Pomegranate Skin: Kinetics, Equilibrium and Thermodynamics
Authors: Y. Laidani, G. Henini, S. Hanini, A. Labbaci, F. Souahi
Abstract:
In this study, pomegranate skin, a material suitable for the conditions in Algeria, was chosen as adsorbent material for removal of lead in an aqueous solution. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, the initial concentration of metal, and temperature. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g, 0.035 mg/g; 1.25 g, 0.096 mg/g). The maximum biosorption occurred at pH value of 8 for the lead. The equilibrium uptake was increased with an increase in the initial concentration of metal in solution (Co = 4 mg/L, qt = 1.2 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficients (R2 > 0.995) and a maximum monolayer adsorption capacity of 0.85 mg/g for lead. The adsorption of the lead was exothermic in nature (ΔH° = -17.833 kJ/mol for Pb (II). The reaction was accompanied by a decrease in entropy (ΔS° = -0.056 kJ/K. mol). The Gibbs energy (ΔG°) increased from -1.458 to -0.305 kJ/mol, respectively for Pb (II) when the temperature was increased from 293 to 313 K.Keywords: Biosorption, Pb(II), pomegranate skin, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12661578 Increase of Peroxidase Activity of Haptoglobin (2-2)-Hemoglobin at Pathologic Temperature and Presence of Antibiotics
Authors: M Tayari, SZ Moosavi-nejad, A Shabani, M Rezaei Tavirani
Abstract:
Free Hemoglobin promotes the accumulation of hydroxyl radicals by the heme iron, which can react with endogenous hydrogen peroxide to produce free radicals which may cause severe oxidative cell damage. Haptoglobin binds to Hemoglobin strongly and Haptoglobin-Hemoglobin binding is irreversible. Peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex was assayed by following increase of absorption of produced tetraguaiacol as the second substrate of Haptoglobin-Hemoglobin complex at 470 nm and 42°C by UV-Vis spectrophotometer. The results have shown that peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex is modulated via homotropic effect of hydrogen peroxide as allostric substrate. On the other hand antioxidant property of Haptoglobin(2- 2)-Hemoglobin was increased via heterotropic effect of the two drugs (especially ampicillin) on peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex. Therefore, in vitro studies show that the two drugs may help Hp-Hb complex to remove hydrogen peroxide from serum at pathologic temperature ature (42 C).Keywords: Haptoglobin, Hemoglobin, Antioxidant, Antibiotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273