Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium

Authors: J.C. Umavathi

Abstract:

The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.

Keywords: Brownian motion and thermophoresis, Porous medium, Nanofluid, Natural convection, Thermal modulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335956

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177

References:


[1] S. Choi, "Enhancing thermal conductivity of fluids with nanoparticle. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows,” ASME FED- vol. 231/ MD-66, pp. 99–105, 1995
[2] S. U. S. Choi, Z. G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, "Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.
[3] S. U. S. Choi, Z. Zhang, and P. Keblinski, "Nanofluids. In: Nalwa, H. (ed.) Encyclopedia of Nanoscience and Nanotechnology,” American Scientific Publishers, New York, pp. 757–773, 2004
[4] S. U. S. Choi, "Nanofluids: from vision to reality through research,” ASME J. Heat Transfer, vol. 131, pp. 033106, 2009
[5] S. Das, S.U.S. Choi, W. Yu W, and T. Pradeep, "Nanofluids Science and Technology,” Wiley, Hoboken, 2008
[6] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, pp. 718–720, 2001.
[7] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, pp. 227–233, 1993.
[8] U. Rea, T. McKrell, L. Hu, J. Buongiorno, "Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids,” Int. J. Heat Mass Transf., vol. 52, pp. 2042–2048, 2009.
[9] C. Wu, T. J. Cho, J. Xu, D. Lee, B. Yang, and M. R. Zachariah, "Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids,” Phys. Rev. E, vol. 81, pp. 011406, 2010.
[10] J. Buongiorno, and W. Hu, "Nanofluid coolants for advanced nuclear power plants,” Paper no. 5705. Proc. ICAPP ’05 Seoul, pp. 15–19, 2005.
[11] J. Buongiorno, L. Hu, S. J. Kim, R. Hannink, B. Truong, and E. Forrest, "Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, issues, and research gaps,” Nucl. Technol., vol. 162, pp. 80–91, 2008.
[12] S. J. Kim, T. McKrell, J. Buongiorno, and L. Hu, "Enhancement of flow boiling critical heat flux (CHF) in alumina/water nanofluids” Adv. Sci. Lett., vol. 2, pp. 100–102, 2009.
[13] C. Kleinstreuer, J. Li, and J. Koo, "Microfluidics of nano-drug delivery,” Int. J. Heat Mass Transf., vol. 51, pp. 5590–5597, 2008.
[14] S. Y. Kim, J. M. Koo, and A. V. Kuznetsov, "Effect of anisotropy in permeability and effective thermal conductivity on thermal performance of an aluminum foam heat sink,” Numer. Heat Transf. A, vol. 40, pp. 21–36, 2001.
[15] S. Y. Kim, and A.V. Kuznetsov, "Optimization of pin-fin heat sinks using anisotropic local thermal nonequilibrium porous model in a jet impinging channel,” Numer. Heat Transf. A, vol. 44, pp. 771–787, 2003.
[16] H. Abbassi, and C. Aghanajafi, "Evaluation of heat transfer augmentation in a nanofluid-cooled microchannel heat sink,” J. Fusion Energy, vol. 25, pp. 187–196, 2006.
[17] Tsai T, Chein R (2007). Performance analysis of nanofluid-cooled microchannel heat sinks, Int. J. Heat Fluid Flow, 28:1013–1026.
[18] M. Ghazvini, M. A. Akhavan-Behabadi, and M. Esmaeili, "The effect of viscous dissipation on laminar nanofluid flow in a microchannel heat sink” IME J. Mech. Eng. Sci., vol. 223, pp. 2697–2706, 2009.
[19] M. Ghazvini, and H. Shokouhmand, "Investigation of a nanofluid-cooled microchannel heat sink using fin and porous media approaches,” Energy Convers. Manage, vol. 50, pp. 2373-2380, 2009.
[20] M. Salloum, R. H. Ma, D. Weeks, and L. Zhu, "Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel,” Int. J. Hyperthermia, vol. 24, pp. 337–345, 2008a.
[21] M. Salloum, R. Ma, and L. Zhu, "Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern,” Int. J. Hyperthermia, vol. 25, pp. 309–321, 2009.
[22] M. Salloum, R. Ma, and L. Zhu, "An in-vivo experimental study of temperature elevations in animal tissue during magnetic nanoparticle hyperthermia,” Int. J. Hyperthermia, vol. 24, pp. 589–601, 2008b.
[23] J. Buongiorno, "Convective transport in nanofluids,” ASME J. Heat Transfer vol. 128, pp. 240–250, 2006.
[24] D. A. Nield, and A. V. Kuznetsov, "Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 52, pp. 5796–5801, 2009.
[25] A. V. Kuznetsov, and D. A. Nield, "Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid,” Transp. Porous Med., vol. 83, pp. 425–436, 2010b.
[26] A. V. Kuznetsov, and D. A. Nield, "The effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid: Brinkman model,” J. Porous Med., vol. 14, pp. 285-293, 2011.
[27] A. V. Kuznetsov, and D. A. Nield, "Thermal instability in a porous medium saturated by a nanofluid: Brinkman model,” Transp. Porous Med., vol. 81, pp. 409–422, 2010a.
[28] S. H. Davis, "The stability of time periodic flows,” Annu. Rev. Fluid Mech., vol. 8, pp. 57–74, 1976.
[29] D. A. Nield, and A. Bejan, Convection in Porous Media, 3rd edn. Springer-Verlag, New York, 2006.
[30] J. P. Caltagirone, "Stabilite d’une couche poreuse horizontale soumise a des conditions aux limites periodiques,” Int. J. Heat Mass Transfer, vol. 19, pp. 815–820, 1976.
[31] B. Chhuon, and J. P. Caltagirone, "Stability of a horizontal porous layer with time wise periodic boundary conditions,” ASME J. Heat Transf., vol. 101, pp. 244–248, 1979.
[32] N. Rudraiah, and M. S. Malashetty, "Effect of modulation on the onset of convection in a sparsely packed porous layer” ASME J. Heat Transf., vol. 122, pp. 685–689, 1990.
[33] G. Venezian, "Effect of modulation on the onset of thermal convection,” J. Fluid Mech., vol. 35, pp. 243–254, 1969.
[34] D. A. Nield, "Onset of convection in a porous medium with non-uniform time-dependent volumetric heating,” Int. J. Heat Fluid Flow, vol. 16, pp. 217–222, 1995.
[35] M. S. Malashetty, and V. S. Wadi, "Rayleigh–Benard convection subjected to time dependent wall temperature in a fluid saturated porous layer,” Fluid Dyn. Res., vol. 24, pp. 293–308, 1999.
[36] M. S. Malashetty, and D. Basavaraja, "Effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer,” Int. J. Appl. Mech. Eng., vol. 8(3), pp. 425–439, 2003.
[37] M. S. Malashetty, and D. Basavaraja, "Rayleigh–Benard convection subject to time dependent wall temperature/gravity in a fluid saturated anisotropic porous medium,” Heat Mass Transf., vol. 38, pp. 551–563, 2002.
[38] M. S. Malashetty, and D. Basavaraja, "Effect of time-periodic boundary temperatures on the onset of double diffusive convection in a horizontal anisotropic porous layer,” Int. J. Heat Mass Transf., vol. 47, pp. 2317–2327, 2004.
[39] B. S. Bhadauria, "Thermal modulation of Rayleigh–Benard convection in a sparsely packed porous medium,” J. Porous Media, vol. 10(2), pp. 175–188, 2007.
[40] B. S. Bhadauria, "Effect of temperature modulation on the onset of Darcy convection in a rotating porous medium,” J. Porous Media, vol. 11(4), pp. 361–375, 2008.
[41] B. S. Bhadauria, and A. Sherani, "Onset of Darcy-convection in a magnetic-fluid-saturated porous medium subject to temperature modulation of the boundaries,” Trans. Porous Media, vol. 73, pp. 349–368, 2008.
[42] I. S. Shivakumara, Jinho Lee, M. S. Malashetty, and S. Sureshkumar, "Effect of thermal modulation on the onset of convection in Walters B viscoelastic fluid-saturated porous medium,” Transp. Porous Media, vol. 87, pp. 291-307, 2011.