Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30753
DIAL Measurements of Vertical Distribution of Ozone at the Siberian Lidar Station in Tomsk

Authors: Oleg A. Romanovskii, Vladimir D. Burlakov, Sergey I. Dolgii, Olga V. Kharchenko, Alexey A. Nevzorov, Alexey V. Nevzorov


The paper presents the results of DIAL measurements of the vertical ozone distribution. The ozone lidar operate as part of the measurement complex at Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk (56.5ºN; 85.0ºE) and designed for study of the vertical ozone distribution in the upper troposphere–lower stratosphere. Most suitable wavelengths for measurements of ozone profiles are selected. We present an algorithm for retrieval of vertical distribution of ozone with temperature and aerosol correction during DIAL lidar sounding of the atmosphere. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. Results of lidar measurement at wavelengths of 299 and 341 nm agree with model estimates, which point to acceptable accuracy of ozone sounding in the 6–18 km altitude range.

Keywords: Atmosphere, Lidar, ozone distribution, DIAL

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804


[1] SAGE II (Stratospheric Aerosol and Gas Experiment II)
[2] V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, “Modification of the measuring complex at the Siberian Lidar Station,” Atmospheric and oceanic optics, vol. 44, no. 10, pp. 756-762, 2004.
[3] E. Galani, D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wemli, and E. Gerasopoulos, “Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system,” J. Geophys. Res., vol. 44, no. D12, P.STA12/1-STA12/10, 2003.
[4] Nakazato Masahisa, Nagai Tomohiro, Sakai Tetsu, and Hirose Yasuo, “Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide,”. Appl. Opt,. vol. 44, no. 12, pp. 2269-2279, 2007.
[5] V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, A. S. Galustov, Yu. M. Kovalev, A. M. Prokhorov, E. S. Svetogorov, S. S. Khmelevtsov, Ch. Kh. Li, “Lidar system for sensing the stratospheric and tropospheric ozone on the basis of excimer lasers,”. Quantum Electronics, vol. 21, no. 6, pp. 591- 596, 1994.
[6] H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, “High resolution lidar measurements of stratosphere-troposphere exchange,” J. Atmos. Sci., vol. 56, no. 3, pp. 319-330, 1999.
[7] V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. V. Nevzorov, O. A. Romanovskii, O. V. Kharchenko, “A differential-absorption lidar for ozone sensing in the upper atmosphere-lower stratosphere,” Instruments and Experimental Techniques, vol. 53, no. 6, pp. 886-889, 2010.
[8] A. V. Nevzorov, A. A. Nevzorov, O. A. Romanovskii, “Software for retrieving the ozone altitude profiles from data of atmospheric laser sensing,” Proc. SPI, vol. 9292, 92923L, 2014.
[9] A. J. Krueger, R. A. Minzner, “A mid-latitude ozone model for the 1976 U.S. standard atmosphere,” J. Geophys. Res., vol. 81, no. D24, pp. 4477-4481, 1976.