Search results for: student learning outcomes
1550 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs
Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald
Abstract:
Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.
Keywords: Education and training, capacity building, evaluation, water and sanitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21971549 Design of an Ensemble Learning Behavior Anomaly Detection Framework
Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia
Abstract:
Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11521548 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)
Authors: Kandarpa Kumar Sarma
Abstract:
The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.Keywords: Assamese, Feature, Recurrent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321547 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5981546 The Challenges and Solutions for Developing Mobile Apps in a Small University
Authors: Greg Turner, Bin Lu, Cheer-Sun Yang
Abstract:
As computing technology advances, smartphone applications can assist student learning in a pervasive way. For example, the idea of using mobile apps for the PA Common Trees, Pests, Pathogens, in the field as a reference tool allows middle school students to learn about trees and associated pests/pathogens without bringing a textbook. While working on the development of three heterogeneous mobile apps, we ran into numerous challenges. Both the traditional waterfall model and the more modern agile methodologies failed in practice. The waterfall model emphasizes the planning of the duration for each phase. When the duration of each phase is not consistent with the availability of developers, the waterfall model cannot be employed. When applying Agile Methodologies, we cannot maintain the high frequency of the iterative development review process, known as ‘sprints’. In this paper, we discuss the challenges and solutions. We propose a hybrid model known as the Relay Race Methodology to reflect the concept of racing and relaying during the process of software development in practice. Based on the development project, we observe that the modeling of the relay race transition between any two phases is manifested naturally. Thus, we claim that the RRM model can provide a de fecto rather than a de jure basis for the core concept in the software development model. In this paper, the background of the project is introduced first. Then, the challenges are pointed out followed by our solutions. Finally, the experiences learned and the future works are presented.Keywords: Agile methods, mobile apps, software process model, waterfall model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16041545 Enhancing Pedagogical Practices in Online Arabic Language Instruction: Challenges, Opportunities, and Strategies
Authors: Salah Algabli
Abstract:
As online learning takes center stage, Arabic language instructors face the imperative to adapt their practices for the digital realm. This study investigates the experiences of online Arabic instructors to unveil the pedagogical opportunities and challenges this format presents. Utilizing a transcendental phenomenological approach with 15 diverse participants, the research shines a light on the unique realities of online language teaching at the university level, specifically in the United States. The study proposes theoretical and practical solutions to maximize the benefits of online language learning while mitigating its challenges. Recommendations cater to instructors, researchers, and program coordinators, paving the way for enhancing the quality of online Arabic language education. The findings highlight the need for pedagogical approaches tailored to the online environment, ultimately shaping a future where both instructors and learners thrive in this digital landscape.
Keywords: Online Arabic language learning, pedagogical opportunities and challenges, online Arabic teachers, online language instruction, digital pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301544 Applications of Big Data in Education
Authors: Faisal Kalota
Abstract:
Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48771543 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861542 The Effectiveness of ICT-Assisted PBL on College-Level Nano Knowledge and Learning Skills
Authors: Ya-Ting Carolyn Yang, Ping-Han Cheng, Shi-Hui Gilbert Chang, Terry Yuan-Fang Chen, Chih-Chieh Li
Abstract:
Nanotechnology is widely applied in various areas so professionals in the related fields have to know more than nano knowledge. In the study, we focus on adopting ICT-assisted PBL in college general education to foster professionals who possess multiple abilities. The research adopted a pretest and posttest quasi-experimental design. The control group received traditional instruction, and the experimental group received ICT-assisted PBL instruction. Descriptive statistics will be used to describe the means, standard deviations, and adjusted means for the tests between the two groups. Next, analysis of covariance (ANCOVA) will be used to compare the final results of the two research groups after 6 weeks of instruction. Statistics gathered in the end of the research can be used to make contrasts. Therefore, we will see how different teaching strategies can improve students’ understanding about nanotechnology and learning skills.
Keywords: Nanotechnology, science education, project-based learning, information and communication technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20751541 Adaptive MPC Using a Recursive Learning Technique
Authors: Ahmed Abbas Helmy, M. R. M. Rizk, Mohamed El-Sayed
Abstract:
A model predictive controller based on recursive learning is proposed. In this SISO adaptive controller, a model is automatically updated using simple recursive equations. The identified models are then stored in the memory to be re-used in the future. The decision for model update is taken based on a new control performance index. The new controller allows the use of simple linear model predictive controllers in the control of nonlinear time varying processes.
Keywords: Adaptive control, model predictive control, dynamic matrix control, online model identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771540 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing
Authors: Sunil Patel, Pallab Maji
Abstract:
To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.
Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4341539 A Virtual Reality Laboratory for Distance Education in Chemistry
Authors: J. Georgiou, K. Dimitropoulos, A. Manitsaris
Abstract:
Simulations play a major role in education not only because they provide realistic models with which students can interact to acquire real world experiences, but also because they constitute safe environments in which students can repeat processes without any risk in order to perceive easier concepts and theories. Virtual reality is widely recognized as a significant technological advance that can facilitate learning process through the development of highly realistic 3D simulations supporting immersive and interactive features. The objective of this paper is to analyze the influence of virtual reality-s use in chemistry instruction as well as to present an integrated web-based learning environment for the simulation of chemical experiments. The proposed application constitutes a cost-effective solution for both schools and universities without appropriate infrastructure and a valuable tool for distance learning and life-long education in chemistry. Its educational objectives are the familiarization of students with the equipment of a real chemical laboratory and the execution of virtual volumetric analysis experiments with the active participation of students.
Keywords: Chemistry, simulations, experiments, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28061538 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools
Authors: Ahmad Ghayoumi, Mehdi Ghayoumi
Abstract:
Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.Keywords: Intelligent school, Management development system, Learning station, Teaching station
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10951537 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware
Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas
Abstract:
Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.
Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38881536 Developing of Intelligent Schools with a New Model of Strategic Management System
Authors: Ahmad Ghayoumi, Mehdi Ghayoumi
Abstract:
Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand Strategic management is a field that deals with the major intended and emergent initiatives taken by general managers on behalf of owners, involving utilization of resources, to enhance the performance of firms in their external environments. Here, we present a model Strategic Management System that has been applied on some schools and have made strict improvement.Keywords: Intelligent school, Strategic management system, Learning station, Teaching station
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001535 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601534 Reflections of Prospective Teachers Toward a Critical Thinking-Based Pedagogical Course: A Case Study
Authors: Ahmet Ok, Banu Yücel Toy
Abstract:
Promoting critical thinking (CT) in an educational setting has been appraised in order to enhance learning and intellectual skills. In this study, a pedagogical course in a vocational teacher education program in Turkey was designed by integrating CT skill-based strategies/activities into the course content and CT skills were means leading to intended course objectives. The purpose of the study was to evaluate the importance of the course objectives, the attainment of the objectives, and the effectiveness of teachinglearning strategies/activities from prospective teachers- points of view. The results revealed that although the students mostly considered the course objectives important, they did not feel competent in the attainment of all objectives especially in those related to the main topic of Learning and those requiring higher order thinking skills. On the other hand, the students considered the course activities effective for learning and for the development of thinking skills, especially, in interpreting, comparing, questioning, contrasting, and forming relationships.Keywords: Critical thinking, critical thinking-based instruction, higher order thinking skills, teacher education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281533 An Extension of Multi-Layer Perceptron Based on Layer-Topology
Authors: Jānis Zuters
Abstract:
There are a lot of extensions made to the classic model of multi-layer perceptron (MLP). A notable amount of them has been designed to hasten the learning process without considering the quality of generalization. The paper proposes a new MLP extension based on exploiting topology of the input layer of the network. Experimental results show the extended model to improve upon generalization capability in certain cases. The new model requires additional computational resources to compare to the classic model, nevertheless the loss in efficiency isn-t regarded to be significant.
Keywords: Learning algorithm, multi-layer perceptron, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15121532 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511531 The Impact of Video Games in Children-s Learning of Mathematics
Authors: Muhammad Ridhuan Tony Lim Abdullah, Zulqarnain Abu Bakar, Razol Mahari Ali, Ibrahima Faye, Hilmi Hasan
Abstract:
This paper describes a research project on Year 3 primary school students in Malaysia in their use of computer-based video game to enhance learning of multiplication facts (tables) in the Mathematics subject. This study attempts to investigate whether video games could actually contribute to positive effect on children-s learning or otherwise. In conducting this study, the researchers assume a neutral stand in the investigation as an unbiased outcome of the study would render reliable response to the impact of video games in education which would contribute to the literature of technology-based education as well as impact to the pedagogical aspect of formal education. In order to conduct the study, a subject (Mathematics) with a specific topic area in the subject (multiplication facts) is chosen. The study adopts a causal-comparative research to investigate the impact of the inclusion of a computer-based video game designed to teach multiplication facts to primary level students. Sample size is 100 students divided into two i.e., A: conventional group and B conventional group aided by video games. The conventional group (A) would be taught multiplication facts (timetables) and skills conventionally. The other group (B) underwent the same lessons but with supplementary activity: a computer-based video game on multiplication which is called Timez-Attack. Analysis of marks accrued from pre-test will be compared to post- test using comparisons of means, t tests, and ANOVA tests to investigate the impact of computer games as an added learning activity. The findings revealed that video games as a supplementary activity to classroom learning brings significant and positive effect on students- retention and mastery of multiplication tables as compared to students who rely only upon formal classroom instructions.
Keywords: Technology for education, Gaming for education, Computer-based video games, Cognitive learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42611530 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric
Authors: C. W. Kan
Abstract:
Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.Keywords: Learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13911529 Combining Bagging and Boosting
Authors: S. B. Kotsiantis, P. E. Pintelas
Abstract:
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.
Keywords: data mining, machine learning, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25631528 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831527 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods
Authors: Adel Aloraini
Abstract:
Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.
Keywords: Causal interactions , banks, feature selection, regularizere,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481526 Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University
Authors: Pirada Techaratpong
Abstract:
This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall business plan, strategic plan, and action plan. The process can be divided into 5 stages. The marketing concept has long been introduced to its policy but not apparently put into action due to inflexible system. Some gaps are found in the process. The research suggests the Art and Culture Office implement the concept of marketing orientation, meeting the needs and wants of its target customers and adapt to the changing situation. Minor guidelines for improvement are provided.
Keywords: Marketing, management, museum, cultural learning center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771525 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity
Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle
Abstract:
The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261524 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh
Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter
Abstract:
To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.
Keywords: E-learning course, message and material development, monitoring and evaluation, social and behavior change communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8671523 Agent-based Simulation for Blood Glucose Control in Diabetic Patients
Authors: Sh. Yasini, M. B. Naghibi-Sistani, A. Karimpour
Abstract:
This paper employs a new approach to regulate the blood glucose level of type I diabetic patient under an intensive insulin treatment. The closed-loop control scheme incorporates expert knowledge about treatment by using reinforcement learning theory to maintain the normoglycemic average of 80 mg/dl and the normal condition for free plasma insulin concentration in severe initial state. The insulin delivery rate is obtained off-line by using Qlearning algorithm, without requiring an explicit model of the environment dynamics. The implementation of the insulin delivery rate, therefore, requires simple function evaluation and minimal online computations. Controller performance is assessed in terms of its ability to reject the effect of meal disturbance and to overcome the variability in the glucose-insulin dynamics from patient to patient. Computer simulations are used to evaluate the effectiveness of the proposed technique and to show its superiority in controlling hyperglycemia over other existing algorithmsKeywords: Insulin Delivery rate, Q-learning algorithm, Reinforcement learning, Type I diabetes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22001522 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks
Authors: Anne-Lena Kampen, Øivind Kure
Abstract:
Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.
Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8281521 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208