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Abstract—Machine learning (ML) can be implemented in 
Wireless Sensor Networks (WSNs) as a central solution or distributed 
solution where the ML is embedded in the nodes. Embedding 
improves privacy and may reduce prediction delay. In addition, the 
number of transmissions is reduced. However, quality factors such as 
prediction accuracy, fault detection efficiency and coordinated 
control of the overall system suffer. Here, we discuss and highlight 
the trade-offs that should be considered when choosing between 
embedding and centralized ML, especially for multihop networks. In 
addition, we present estimations that demonstrate the energy trade-
offs between embedded and centralized ML. Although the total 
network energy consumption is lower with central prediction, it 
makes the network more prone for partitioning due to the high 
forwarding load on the one-hop nodes. Moreover, the continuous 
improvements in the number of operations per joule for embedded 
devices will move the energy balance toward embedded prediction. 
 

Keywords—Central ML, embedded machine learning, energy 
consumption, local ML, Wireless Sensor Networks, WSN. 

I. INTRODUCTION 

HE overriding focus in WSNs has been to preserve 
energy. Sending and receiving data have been the major 

energy consumer in such networks. One approach is therefore 
to process data locally, i.e. embedded processing, and only 
submit control actions or calculated data instead of 
transferring all underlying information. The result is smart 
environments, where decisions are moved from a central 
location to the embedded device. Delay can be reduced since 
no transmissions are needed before taking decisions and 
activating appropriate action. Preventing transmission and 
central storage of raw-data improve privacy and security. In 
addition, the consequences of network partitioning are 
reduced. These advantages are precious for a wide range of 
areas from autonomous vehicles, drone navigation and 
robotics to health technology. Another important advantage of 
reduced transmissions is that energy usage may be reduced, 
especially for the nodes in the vicinity of the central in 
multihop networks, which must forward all traffic sent by 
nodes located further away. Reducing energy increases 
network lifetime.  

Smart environments are important parts of IoT and Industry 
4.0 [1]. Embedded ML has a potential to significantly extend 
where such an approach is beneficial [2]. The deep learning 
algorithms that are the basis for ML were introduced in the 
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late 20th century [3] and have had a rapid development in the 
past decade producing successful information retrieval, 
computer vision [4], speech recognition [5] and image analysis 
[6].  

When designing a network, the benefits of embedded ML 
must be weighed against the benefits of central solutions. For 
embedded ML, the process decisions are made solely on local 
data, which may result in sub-optimal performance. On the 
contrary, central predictions take advantage of full knowledge 
of all the raw-data gathered in the network to improve the 
quality of the results, and to make more coordinated decisions.  

Training of ML models requires excessive processing 
capacity and is time, energy and memory consuming. The 
training process is therefore generally not suitable for 
embedded systems. Prediction on the other hand, may be 
performed on embedded devices, for instance using 
TensorFlow Lite which is a lightweight version of 
TensorFLow [7]. TensorFlow Lite is designed to enable low-
latency prediction of deep feed-forward neural networks on 
embedded and mobile devices.  

In this paper, we investigate the trade-off between sending 
data to a central location for processing, versus local 
processing, i.e. embedded ML. Our motivation is to assess to 
what extent embedded ML is favorable in WSNs, especially in 
terms of network energy usage. WSNs are an interconnected 
collection of sensor nodes whose data are sent to a collection 
node, in this paper called the central. Some of the nodes are 
not in direct contact with the central such that nodes must 
forward data on behalf of each other. We highlight and discuss 
the various factors that affect the embedded-central trade-off, 
such as network size in terms of number of hops, amount of 
data sampled by the sensors and quality requirement set by the 
applications. Furthermore, to get a more insightful assessment 
of the trade-offs between central and embedded ML, we 
estimate energy usage in WSN. To this end, the nodes are 
running a ML model that predicts soil moisture. The soil 
moisture is decided by several factors [8]; increasing 
temperature of applied water reduces the time for wetting, 
irreversible drying process can induce water repellence and so 
forth. Thus, predicting of soil moisture is a hard problem [9]. 
However, rather than pursuing an accurate moisture 
prediction, the goal is to develop a reasonable model as a 
means to gain insight into the sought energy usage trade-off. 

Our contribution is to discuss and compare the trade-off 
between central versus embedded ML. According to energy 
consumption, the discussion is supported by measurements 
and calculations. It is revealed that, although transmission is 
currently cheaper than prediction, embedding is likely to 
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lengthen the network lifetime in large multihop networks.  
Section II presents related work, the central versus 

embedded ML discussion is presented in Section III. Section 
IV presents moisture prediction followed by energy evaluation 
in Section V. Section VI presents the conclusion. 

II. RELATED WORK 

Our aim is to investigate the energy trade-off between 
central and embedded ML. There are few examples of full 
implementation of embedded deep learning found in the 
literature [10]. The training processes are almost always 
performed off-device, and even running the pre-trained model 
can be too resource-demanding for small embedded systems 
[11]. Still, the offloading part of ML processing is possible 
with the right combination of ML algorithms and embedded 
device. In [12], prediction is shared between the low power 
MSP423 device, which performs feature extraction and 
logistic regression, and the gateway which performs 
classification using Gradient Boosting Tree. They found that 
energy consumed using their approach reduces the energy 
usage of the IoT device to 1/16 of transmitting the raw data. In 
[13], the energy and time consumed for prediction on mobile 
and IoT class hardware is presented. The prediction is based 
on deep learning algorithms, Deep Neural Network (DNN) 
and Convolutional NN (CNN), to process audio and image 
data. The processing time reported varies from less than 1 ms 
for models that are simple in terms of number of model 
parameters, to 4.7 minutes for more complex models. Some 
part of the deep learning computation can be performed on 
mobile devices, while some are offloaded to the cloud for 
maximum performance and energy efficiency [14] or 
improving leaning performance and reducing network traffic 
[15]. An example of complete implementation of both training 
and classification on embedded devices is presented in [16], 
where Gaussian mixture model (GMM) is used as a kind of 
simple embedded ML. Furthermore, [17] presents a solution 
where training is distributed to small sensor nodes by making 
the nodes cooperate to conduct the training.  

An applicable method to reduce energy usage is to optimize 
the sensing process by reducing the sampling frequency as 
suggested in [18], where the energy impact of distributing 
increasing parts of the ML process to embedded platforms is 
evaluated. The ML process is divided into optimization of 
sampling frequency, embedded featuring and embedded 
classification. The result shows that optimization of sampling 
has by far the highest impact to reduce energy usage.  

Studies of embedded ML in WSN as well as control system 
issues related to WSN are presented in literature. A survey of 
wireless network design for control systems is presented in 
[19], taking interactive variables such as sampling period, 
message delay, message dropout, and network energy into 
consideration. A discussion of central versus embedded use of 
deep learning used in the WSN is presented in [20]. The 
conclusion is that embedding can offload the processing 
burden of the central and reduce traffic. However, centralized 
approaches are still the dominating solution applied. Alsheikh 
et al. [21] study ML for routing, localization, clustering and so 

forth, and emphasize that the limited resources of the network 
must be taken into consideration. Applying WSN as part of a 
control system is discussed in the survey [22], where the focus 
is industrial requirements and candidate protocols. In [23], a 
wireless sensor-actuator system for industrial control system is 
studied, focusing on real-time performance. Our focus is 
directed toward issues specifically related to use of ML in 
multihop network topologies. 

Various solutions to predict soil moisture are proposed in 
the literature. Neural Network (NN) is used to predict soil 
moisture one hour ahead in [24] in order to optimize irrigation. 
The horizontal and vertical forces acting on a chisel represent 
the input dataset to an auto-regressive error function combined 
with NN models to estimate soil moisture in [25]. SVM is 
used to predict soil moisture using weather data along with 
soil temperature from 11 meteorological stations as input are 
presented in [26].  

III. EMBEDDED VERSUS CENTRAL ML 

This section discusses the trade-off between central and 
embedded ML for multihop WSNs. We use ‘central’ ML as a 
collective term for any kind of cloud or other centralized 
systems where the data must be transmitted from the nodes 
toward a more centralized location for management. The 
border between embedded and central approaches is not firm. 
The embedded device can take control of an increasing part 
for the ML process. In this discussion, the ML process is 
divided into prediction and training.  

The scenarios discussed consist of battery charged sensor 
nodes, in addition, actuators can be located adjacent to the 
sensors to provide process control. The actuators can be 
controlled either from the central or from the adjacent sensors 
for the embedded solution. The latter requires no transmission 
over the network. Thus, if the sensors’ raw-data are used to 
control the actuators, the actuators respond without the delay 
otherwise introduced by ML processing or transmission. 
Reducing delay is essential for critical processes in industry 
and automotive networks [27], for instance for motion control 
applications [28]. 

If prediction is used as part of a control action, a priori it is 
uncertain whether embedded prediction or central prediction is 
advantageous. Central prediction will normally be faster due 
to substantially larger computing resources compared to an 
embedded device. On the other hand, central prediction will 
incur transmission and queuing delay, and must handle packet 
loss.  

For robustness against network failures, the advantages of 
embedded solutions are more pronounced. Wireless systems 
cannot always provide consistent and resilient connection with 
the central. However, sensor sampling is not affected by 
network failures thus the adjacent actuators continue to 
receive instructions. Such uninterrupted continuation of 
processes can be crucial for instance for industrial and 
healthcare processes that should continue even under denial-
of-service attacks [29]. 

Another important advantage of embedded prediction is 
enhanced privacy and security since it avoids potential 

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:14, No:9, 2020 

306International Scholarly and Scientific Research & Innovation 14(9) 2020 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 I
nf

or
m

at
io

n 
an

d 
C

om
m

un
ic

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

4,
 N

o:
9,

 2
02

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

11
42

5.
pd

f



 

 

exposure of data to a third party [30]. The raw-data do not 
traverse the wireless medium, which is prone to 
eavesdropping. In addition, the data are not centrally cached. 
Caching all data centrally makes the central an inspiring target 
for hackers [29]. Enhancing privacy is especially beneficial for 
sensitive data subject to regulations.  

Using embedded prediction, the energy-usage between the 
nodes is balanced, and the nodes are more likely to deplete 
simultaneously, which may be an advantage for network 
management. In contrast, transmission gives an unbalanced 
energy sage between the nodes. Specifically, nodes in the 
proximity of the central must forward data from nodes located 
further away such that the forwarding load increases with 
decreasing hop-count. Thus, the one-hop are the fasted 
depleting nodes since they undergo the heaviest forwarding 
load [31]. In addition, they are the most critical to keep the 
network connected. However, for embedded solutions the 
predictions are based solely on local sensor readings, which 
raise issues. Data from several neighboring sensors cannot be 
compared to detect noisy or false sensor readings. False 
readings may lead to harmful controller actions and input data 
with noise are likely to give inaccurate predicted values. In 
addition, the control performance may be sub-optimal since 
the individual controller lacks information about the state or 
output of other controllers [32]. In contrast, centralizing 
prediction takes advantage of full knowledge of the raw-data 
to improve the quality of the results. All nodes transmit all 
sampled data to the central. In addition, the improved memory 
resources of the central mean that data for a longer period can 
be cached to search for unexpected temporal changes, and 
better investigation of the reasons for failing readings. 
Improved overview, understanding and knowledge of the 
surveyed scenario are gained for further improvements of the 
processes, and coordinated control of the overall system. In 
addition, troubleshooting regarding both raw-data and the 
prediction processes are easier.  

The discussion above shows that there is an important 
quantity – quality trade-off between embedded and centralized 
predictions. Although, embedded predictions are appealing 
regarding reduced network traffic, quality aspects like 
prediction accuracy and efficient troubleshooting need to be 
considered when deciding the most appropriate scheme. 
Centralized approaches may be needed for critical processes 
requiring coordinated control and efficient troubleshooting. 
The improvement in network lifetime that embedded 
prediction may provide must be balanced against these 
advantages. On the other hand, control may be sacrificed for 
more continuity in the control process. Embedded processes 
work even when the network is disconnected.  

So far, the focus has been on central versus embedded 
prediction and control, training, on the other hand, is generally 
performed centrally. The most apparent advantage relates to 
the limited processor, memory and energy resources of the 
nodes [33]. The limitations result in infeasible long processing 
time, inability to cache the amount of data point that may be 
needed for training and early depletion of sensors nodes. 
Battery replacement of depleted nodes increases maintenance 

cost and should therefore be avoided [18]. In addition, 
administration of the training process may require individual 
management of each node, which is more challenging than 
managing a common central.  

Aggregation can be used to exploit spatial and temporal 
correlations in the data to reduce the number of transmissions 
needed for central training. The energy gains of aggregation 
increase with aggregation period. However, the longer the 
aggregation interval, the poorer is the granularity of the input 
to the training process which may give less accurate ML 
models. Generally, fast changing processes should not be 
aggregated; at least great care must be taken to ensure that all 
variations of input parameters are included in the training 
dataset for the trained model to be correct. Thus, the accuracy 
of the trained model must be balanced against reduced 
network traffic [34].  

The main disadvantage of centralized training applies to 
reduced privacy and increased network traffic. In addition, 
training individual models for each node or a common model 
with data from all the nodes as input, places significant 
workload on the central.  

IV. ML 

This section presents ML predictions of soil moisture. The 
data form a weather station along with the data from moisture 
sensors have been collected over a period of about four 
months. The data are transmitted over wire from the gauging 
instrument to a server. From the server the data are 
downloaded to a computer and raspberry Pi for processing. 
ML has been implemented using scikit-learn library [35] with 
Python programming language.  

The parameters that are measured are rainfall, rain-rate, 
humidity, dewpoint, outside temperature, radiation and 
windspeed. For ML, DNN is implemented with multi-layer 
perception (MLP) for supervised regression problem. The 
stochastic gradient-based optimizer Adam [36] is used for 
training. R^2 is used find the optimal DNN topology. The 
value of R^2 ranges from -∞ to 1. A value less than zero 
indicates that the observed mean is better than the predicted 
value, and a value of 1 indicates a perfect agreement between 
the predicted value and the measured soil moisture. Fig. 1 
displays the moisture prediction. The black curves represent 
the reference moisture values, provided by the moisture 
sensor. The dimmed curves represent the predicted values. 

 

 

Fig. 1 Measured and predicted soil moisture 
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V. ENERGY USAGE 

This section investigates the energy balance between 
embedded and central ML based on the energy usage of the 
embedded devices. Raspberry Pi, which according to [37] is 
one of the best-known hardware IoT platforms, is used for 
estimation. The raspberry Pi cannot enter a real sleep state like 
other low power nodes; thus, the idle mode consumption will 
reduce the profit of offloading resource-demanding processes 
from the embedded device to the central. In addition, our 
measurements are based on complex models that detect soil 
moisture; other prediction models would give other values. 
However, the measurements show a valid trend for the energy 
usage associated with the various ML processes, and our 
results are therefore useful when designing energy efficient 
WSNs.  

We use the power-models presented in [38] and [39] to 
estimate the power consumed by the raspberry Pi when 
processing the data. See the references for the exact equations. 
We report average values for 20 measurements.  

The CPU consumes energy for processing of sensor data. In 
contrast, the energy consumed during communication is 
generally dominated by the radio, especially in WSNs using 
small sensor nodes such as [40]. Thus, the energy consumed 
for communication is focused toward the time the radio is 
active to transmit and receive.  

To investigate transmission, we chose a data packet size of 
128 Byte. The size of the packet is selected by counting the 
bytes needed to carry all required information, such as 
readings from seven sensors represented as integer numbers in 
addition to general management fields.  

For energy usage, we assume a completely fair workload 
between the nodes, which means that the number of 
predecessor nodes is equally balanced between all the nodes at 
a given hop-distance from the central. Predecessors of a node 
are all the nodes whose data are forwarded through this node 
to reach the central. The immediate predecessors are called 
child nodes; accordingly, their immediate successor is called 
parent node. Each parent node has three child nodes in our 
scenarios.  

For centralized approaches, the sampled data from all the 
nodes are transmitted to the central for prediction. That is, data 
form nodes further away must be forwarded reach the central 
as explained in Section III. In addition, all nodes overhear 
traffic from nodes in their vicinity, i.e. their neighboring 
nodes. The energy usage for overhearing is fairly similar to the 
energy used during transmission. Within our rough 
approximation, they can be considered equal. Both the overall 
energy consumption and the energy use by the nodes one-hop 
away from the central will then scale linearly with the number 
of overhearing nodes. In actual deployment, the nodes will 
have different number of nodes they overhear. For our 
illustration we believe that overhearing four nodes is a 
reasonable assumption. Typically, sleep algorithms and MAC 
protocols will incorporate some robustness or non-optimality. 

Comparing central versus embedded ML means that the 
energy consumed when all data are transmitted to the central 
for prediction is compared against the energy consumed when 

the prediction is performed at the embedded device, thus no 
transmissions. We do not consider the energy impact of any 
action that results from the prediction, whether they initiate a 
control action, or they just are logged centrally. We focus 
solely on the impact on energy usage of processing raw data 
locally or centrally.  

The total energy consumed by the network is the sum of the 
consumption of each individual node.  

 

 

Fig. 2 The continuous graphs represent prediction and the dotted lines 
represent transmission. (a) compares the total energy consumed for 
embedded versus central prediction. (b) compares the energy usage 
for the one-hop nodes during embedded versus central prediction 
 
In Fig. 2 (a), the total energy consumed for embedded 

prediction is compared against the total energy consumed for 
transmission to the central, i.e. embedded versus central ML. 
The curves show that transmitting to the central saves energy. 
The reason is that energy scales with process time, and 
transmission is a much faster process than prediction, see 
Table I. However, the total energy consumption does not 
convey a full picture. In a wireless network, the nodes one-hop 
away from the central will have the highest energy 
consumption during transmission, since they forward the 
highest number of packets. These nodes will therefore deplete 
first, by which the network is partitioned. Fig. 2 (b) compares 
the one-hop node’s consumption during embedded prediction 
(horizontal line) and central ML, i.e. when all nodes transmit 
their data to the central (dotted curve). When the network size 
increases beyond three hops, transmission consumes more 
energy than prediction. Thus, to maintain a connected network 
and increase network lifetime, embedded prediction should be 
considered, especially for large networks.  

 
TABLE I 

CONSUMPTION FOR PREDICTION AND TRAINING 
 Power 

consumption [W] 
Runtime [s] 

Energy consumed 
[J] 

Prediction 1.4893 0.1001 0.149 

Tx 128 bytes 2.1939 0.0004 0.0009 

Training 1.5-moth 1.6435 117557 193200 

Training 4-month 1.6441 208755 343209 

 

Training is, as expected, several orders of magnitude more 
expensive in both time and energy compared to prediction, see 
Table I. The results support the argument presented in [11] 
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that training must be performed off-device. The argument is 
strengthened as the size of the dataset increases. The reason is 
that the energy usage is related to the size of the dataset, which 
is also supported by our measurements. The number of rows in 
the 4-month dataset is 1.83 times the length of the 1.5-month 
dataset, while the related energy factor is 1.78.  

VI. CONCLUSION 

The numbers presented here are just snapshots in a fast-
changing technology. There is a rapid improvement in the 
number of operations per joule. Predictions will therefore 
consume less energy as technology improves. This 
improvement is more rapid than the development of more 
energy efficiency for the radio. The energy-reduction for 
raspberry Pi is likely to follow the exponential graph presented 
in Fig. 5 in [39], where the number of computations achieved 
per kWh is doubled every 19 months. Thus, in three years’ 
time the energy usage for the prediction process is about a 
quarter of today. That is, the horizontal line in Fig. 2 (b) 
moves down to 0,038 J, such that embedded prediction 
becomes the most energy efficient approach when the network 
size is larger than two hops. Other radio technologies and 
network topologies would give other results; however, the 
trend is similar. In addition, there is an effect of moving 
prediction for general purpose CPU to specialized FPGA or 
chips. Overall, our examples illustrate that one must expect 
that balance point between embedded prediction versus 
transmission to a central point will shift towards embedding, 
also in networks with fewer nodes than used in our illustration. 
Thus, embedding the prediction process saves energy in future 
networks, however the price paid is reduced quality and 
robustness as discussed in Section III. 
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