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Abstract—We propose the use of Reinforcement Learning (RL)
as a viable alternative for optimizing supply chain management,
particularly in scenarios with stochasticity in product demands. RL’s
adaptability to changing conditions and its demonstrated success in
diverse fields of sequential decision-making make it a promising
candidate for addressing supply chain problems. We investigate
the impact of demand fluctuations in a multi-product supply chain
system and develop RL agents with learned generalizable policies.
We provide experimentation details for training RL agents and a
statistical analysis of the results. We study generalization ability of
RL agents for different demand uncertainty scenarios and observe
superior performance compared to the agents trained with fixed
demand curves. The proposed methodology has the potential to lead
to cost reduction and increased profit for companies dealing with
frequent inventory movement between supply and demand nodes.

Keywords—Inventory Management, Reinforcement Learning,
Supply Chain Optimization, Uncertainty.

I. INTRODUCTION

SUPPLY chain optimization is critical for almost every

company that deals with frequent inventory movement

between supply and demand nodes. Optimized movement of

inventory from one node to another in response to the product

demand can potentially lead to a reduction in the overall

costs and an increased profit. Typically, companies employ

standard procedures such as fixed-reorder policies for supply

chain management [1]. Even though such heuristic policies are

simplistic, they are commonly used in industrial applications:

fixed policies offer ease of understanding, tractability and can

be easily utilized by supply chain professionals. However,

fixed policies have limitations in applicability such as: (i)
the frequent recommendation of suboptimal solutions, and (ii)
the inability to perform well in large networks and complex

stochastic environments, such as those influenced by demand

fluctuations, cost variations, etc. [2].

Supply chain optimization is, in essence, a complex

sequential decision-making problem with the objective of

maximizing profit and minimizing monetary or product

loss within a given time horizon. Overall supply chain

optimization requires the optimization of each sequential

step, e.g., the transfer of product from supply to distribution

warehouses. Advancements in Deep Reinforcement Learning
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(DRL), a research area in Reinforcement Learning (RL),

have shown great promise in recent years across different

fields of sequential decision-making, e.g., robotics, AI game

playing agents, automated stock trading, process control,and

self-driving cars etc. [3]-[5]. The success of RL in these

fields suggests the potential for the future application of

RL-based optimal decision-making models to other dynamic

systems where an adaptive control is required [6]-[8]. We

hypothesize that RL can be a viable alternative for supply

chain optimization problems, particularly in scenarios with

stochasticity in product demands. The main benefit of RL

over most classically-used methods is its adaptability; RL

is successful at accommodating the varying conditions often

present in supply chains [9]. A generic policy can be learnt that

adapts well to variability in supply chain environment such as

demand fluctuations.

The primary objective of this research is to develop RL

agents with generalizable and robust policies. We investigate

the impact of demand fluctuations in a multi-product supply

chain environment that comprises of a single supply node

delivering inventory to two customer nodes (Fig. 1, Section

III). Products are shipped on a daily basis, and there is

an uncertainty associated with the product demands. We

study sharp (single day) fluctuations in product demand and

develop RL agents for three analogous sub-scenarios. In the

experimental scenarios examined, a specific training protocol

is implemented for the agents. During the training process,

the agents are exposed to a variety of demand curves, selected

from a pre-prepared set. The set of demand curves is carefully

crafted to cover the entire spectrum of demand disruptions

that the agents are expected to encounter during subsequent

testing. Results indicate that agents trained with this protocol

are generalizable to test scenarios and surpass the performance

of baseline agents, i.e., RL agents trained with fixed demand

curves.

This paper is organized as follows. Section II presents

related works in the field of supply chain optimization.

In Section III, we describe the supply chain network and

present how the supply chain is modeled as a Markov

Decision Process. We discuss basics of RL and our training

methodology to design adaptive agents in Section IV. Results

are presented in Section V, followed by conclusions and

suggestions for future research in Section VI.

II. LITERATURE SURVEY

In this section, we briefly discuss some recently published

available literature relevant to supply chain optimization
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through RL. The work presented in [6] utilizes DRL

algorithms such as PPO to solve the supply chain

inventory management problem under three distinct scenarios

representative of different supply chain networks, comparing

the performance of each scenario to standard inventory

management policies. The authors in [11] investigate the

impact of three different RL methods on the optimization

of safety stock in a linear chain of independent agents. A

key feature of presented RL based approach is that it can

simultaneously optimize both safety stock level and order

quantity parameters of an inventory policy. Reference [10]

models the supply chain optimization problem as a Markov

Decision Process to design the environment and utilizes two

different RL algorithms namely SARSA and REINFORCE

alongside the conventional static policy to obtain an optimal

set of inventory management actions.

Reinforcement learning based optimization approaches

have also been employed to deal with complex supply

chain scenarios involving uncertain events. For multi-product

inventory problems, [12] uses the advantage actor critic

(A2C) and deep Q-network (DQN) algorithms with quantized

action spaces for optimization. In this work, authors consider

realistic business goals such as minimization of wastage as

the optimization objective and also show that the learned

policy can be transferred with minimal training to a supply

chain with different number of products. Furthermore, a

more complicated supply chain is considered in [9], with

optimization depending on the additional factors of demand

uncertainty and multi-level supply chains. For optimization,

a deep RL algorithm named PPO [15] is deployed to

solve the problem for a wide array of uncertainities i.e.

uncertain, regular and seasonal demands and constant or

stochastic lead times. A similar approach in [13] presents

two DRL based methods to solve multi-period capacitated

supply chain optimization problem under demand uncertainty

while considering both continuous and discrete action space.

Based on the literature reviewed, it appears that deep RL

algorithms may offer certain advantages over traditional

inventory management algorithms in dealing with supply chain

optimization problems.

III. PROBLEM DESCRIPTION

In this section we present the supply chain system

and discuss modelling details of optimal sequential

decision-making through Markov Decision Process

framework.

A. Supply Chain Network

Due to confidentiality considerations, it is not possible to

provide precise numerical data for the supply chain. Instead,

we present normalized or scaled data where necessary.

Fig. 1 shows a schematic of the supply chain. The network

consists of a single factory (F ) serving two customers: C1 and

C2. The factory produces 3 products each of two categories:

P1 and P2 and ships them to C1 and C2 respectively. There

are six products in total: P11, P12, P13, P21, P22, P23, with

the first three delivered to C1 and the later three delivered to

Fig. 1 Schematic diagram of the supply chain network with a single factory
(F ) and two customers C1 and C2, where six products P11, P12, P13, P21,
P22, P23 are produced and shipped using separate storage and transports
(for simplicity we show only a single transport and a single warehouse)

C2. A separate storage warehouse and a separate transport

is allocated for moving each product between factory and

customers. The warehouses start with certain initial stock

levels and have associated minimum and maximum storage

capacities (in kg). Carrier transports for each product also

have a given maximum load capacity. For simplicity, we

assume fixed daily production (kg/day) of each product and

no transit times associated with the product movement in the

network. We have associated costs including production costs,

storage costs and transportation costs measured in USD/kg.

All costs are assumed to be constant. Initially, we consider

a fixed daily demand for the products (kg/day), but we

later investigate demand fluctuations as well. The shipping

decisions from factory to customers are made on a daily basis.

Each period requires determining the amount, in kilograms,

of each product to be stored at warehouses and the amount

shipped to customers. The objective is to maximize the annual

cumulative profit.

B. Modeling Supply Chain as Markov Decision Process

Markov Decision Process or MDP’s are a classical

formalization of sequential decision-making problems, where

actions influence not just immediate rewards, but also

subsequent situations, or states, and the future rewards [14].

In this section, we discuss how the supply chain optimization

problem of the network shown in Fig. 1 can be formulated as

a finite MDP. In a finite MDP, the sets of states, actions, and

rewards all have a finite number of elements.

At any given time, t, the state space st comprises of product

stock levels at the factory and customer warehouses. Thus,
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st :=
[
W t

11,F ,W
t
12,F ,W

t
13,F ,W

t
21,F ,W

t
22,F ,W

t
23,F ,

W t
11,C1

,W t
12,C1

,W t
13,C1

,W t
21,C2

,W t
22,C2

,W t
23,C2

,
]
,

(1)

where, W t
ij,F denotes the stock level of product Pij at the

factory warehouse and W t
ij,C1

denotes the stock level of

product Pij at customer C1 warehouse at time t.
Actions comprise of daily product quantities shipped from

factory to the customer warehouses. Thus, at any time t, action

space at is:

at :=
[
Qt

11, Q
t
12, Q

t
13, Q

t
21, Q

t
22, Q

t
23

]
, (2)

where, Qt
ij denotes quantity of Pij shipped from the factory

to the customer warehouses at time t. Based on (1) and (2),

state transitions equations to the next state st+1 can be written

as:

st+1 :=
[
W t

11,F + St
11 −Qt

11, ...

W t
23,F + St

23 −Qt
23, ...

max{W t
11,C1

+Qt
11 −Dt

11, 0}, ...
max{W t

23,C2
+Qt

23 −Dt
23, 0}

]
,

(3)

where, St
ij and Dt

ij denote supply quantity and demand

respectively for product Pij at time t. Note that we limit the

minimum value of the state variable representing customer

warehouse storage levels to 0 - it is not feasible for warehouses

to meet demands higher than the existing stock levels.

The one-step reward function, rt, represents the profit

gained during each time period t. The profit can be calculated

as the total revenue minus the total cost for each time period.

The total revenue is calculated by summing the product of the

demand, Dt
ij , and the sales price, pij , for each product Pij .

Thus, total revenue, Rt, at time t is given by:

Rt =

2∑
i=1

3∑
j=1

Dt
ij · pij (4)

The total cost is calculated by summing the production cost,

Cprod, storage cost, Cstor, and transportation cost, Ctrans, for

each product. Thus, total cost, Ct
total, at time t is given by:

Ct
total =

2∑
i=1

3∑
j=1

(Cprod,Pij + Cstor,Pij + Ctrans,Pij ), (5)

where, Cprod,Pij
denotes production cost for product Pij and

so on. The reward function is then calculated as the difference

between the total revenue (given by (4)) and total cost (given

by (5)). Thus,

rt = Rt − Ct
total (6)

By maximizing the reward function over time, the supply

chain can maximize its annual cumulative profit over an

episode of a single year.

Fig. 2 Agent-environment interaction in an MDP: at time t and state st, the
agent takes action at based on policy π(at|st), receives reward rt, and
transitions to new state st+1; goal is to maximize long-term expected

cumulative reward

IV. METHODOLOGY

In this section, we discuss basic RL and DRL concepts, and

present experimental details of our study.

A. Reinforcement Learning Concepts

Fig. 2 depicts the fundamental learning mechanism in

RL. At time step t, the agent takes an action at and the

environment transitions from state st to state st+1, resulting

in an immediate reward rt. The agent then uses the state

information st+1 and the immediate reward rt to select the

next action at+1, and the cycle continues.

The optimal policy, denoted by π(at = a|st = s), is

a mapping from states to actions that maximizes the value

function vπ(s), which represents the long-term expected sum

of future rewards:

vπ(s) = Eπ

[ ∞∑
t=0

γtrt|st = s
]
, (7)

where E[.] denotes the expected value of a random variable

given that the agent follows policy π, and t is the time step.

Here, the discount factor γ ∈ [0, 1] determines the importance

of future rewards, with γ = 0 corresponding to a greedy agent

that only cares about the reward at the next time step, and

γ = 1 corresponding to an agent that values all future rewards

equally. It is important to note that each value function vπ(s)
is tied to a specific policy π, which dictates the agent’s future

trajectory through the space of states.

RL algorithms can be thought of as iterative updates to

a policy that improve the associated value function for all

states. If the agent properly adjusts the policy at each iteration,

the policy will continue to improve, resulting in larger and

larger values for the value function at any given state. It is

natural to wonder whether the value function ever reaches

its optimal value, v∗(s). Bellman’s optimality equation, a

necessary condition in optimal control theory, provides an

answer to this question:

v∗(s) = max
∑
s′,r

p
(
s′, r|s, a

)[
r + γv∗(s′)

]
(8)

Here, the transition probability p
(
s′, r|s, a

)
calculates the

probability that the environment will transition to state s′ with
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reward r given the current state s and action a. Bellman’s

optimality equation gives a set of nonlinear equations that,

in theory, can be solved directly to produce the optimal

value function v∗(s) for a discrete set of actions and

states. In practice, however, these equations are often not

directly solvable due to either a lack of knowledge about

the environment’s transitions or the state space being too

large to allow for a reasonable solution. All RL algorithms

are therefore approximate solutions to Bellman’s optimality

equation, and they address these limitations in different ways.

For continuous states and actions, the state and action

spaces can be enormous, making it impossible to derive

exact solutions for the optimal value function. In these cases,

function approximation methods, such as neural networks, are

often used. Specifically, we can parameterize the approximate

value function with parameters θ as follows:

v(s) ∼= vθ(s) (9)

Goal of the RL method in this case is to estimate θ that

produce a value function that is as close to the actual value

function as possible, for example, in terms of reducing the

mean squared error (MSE):

L(θ) =
1

2

∑
s

[
vθ(s)− v∗(s)

]2
(10)

B. Agent Training Experiments

We provide the experimentation details for training RL

agents in this section.

a) Base Agents: In our initial experimentation, we utilize

RL methodology to train agents for a scenario in which

the demand for all six products, P11, P12, P13, P21, P22,

and P23, remains constant over the course of the year. We

accomplish this by training and evaluating the agents using

constant demand values, Dij , for each product Pij . We refer

to the agents trained in this manner as base agents and it serves

two primary purposes: (i) it provides a basis for comparison

between the RL agents and a mathematical optimization

benchmark, and (ii) it generates a set of base agents that can

be compared to those specifically trained for handling sharp

demand uncertainties.

We use a PPO algorithm for training agents throughout

the entirety of the research [15], [16]. We use PPO

implementation of Python library Stable Baselines and its

default hyperparameter settings are employed [17]. Typically,

we trained the agents for roughly 1.5 × 106 to 2 × 106

environment iterations, allowing enough time for a policy

convergence. Since, we are provided the upper and lower

limits for state and action variables (as given by (1) and

(2) respectively), we normalize their values. Specifically, we

normalize state space between [0, 1] and action space between

[-1, 1] for assistance in policy training.

In RL, training a single agent on a particular task or

environment can be highly stochastic and may not guarantee

the optimal solution [18]. This is true as the optimization

process involves many random variables, such as the initial

state and reward distributions, which can result in different

outcomes for the same algorithm and hyperparameters.

Therefore, to account for the inherent variability of the

method, we train 20 independent base agents. Training

multiple agents also provides a basis for statistical analysis,

allowing for the calculation of means, medians and distribution

spreads of key metrics, which helps in drawing more reliable

conclusions about the effectiveness of the RL algorithm.

A common challenge that arises in employing RL for

constrained environments is dealing with invalid actions -

during training, an action is taken which might result in

the value of a state variable to lie outside of its prescribed

bounds [21]-[23]. In our problem, this might lead to warehouse

storages falling lower than the permissible lower limit or

increasing beyond the maximum capacity during the state

transition step (given by (3)). We use a penalization approach

to de-incentivize agents from taking invalid actions by tailoring

suitable penalty function. At each iteration of the environment,

a penalty value is calculated based on the storage levels of

products in factory and customer warehouses and is subtracted

from the reward scalar.

b) Adaptive Agents: Generally, supply chains have at

least some sort of variability in demand profiles. As such,

it is expected that agents trained using fixed demand profiles

may exhibit poor generalization performance when applied to

scenarios characterized by stochasticity in product demands.

To develop RL agents capable of learning generalizable

policies for adapting to sharp single-day demand fluctuations,

we devise a certain training procedure. Please note that to

protect the confidentiality of the training protocol, its specific

details have been obfuscated and we only provide a restricted

version below.

Procedure – Strategy to design adaptive RL agents capable

of handling product demand stochasticity.

Steps :

1: Add normally distributed random noise to the product

demands with zero mean and a standard deviation of 1%

- 2% of Dij .

2: Sets of demand curves are generated, with each set having

a certain % of the total days in a year where the demand

for each product, Dt
ij , is increased by 0.50*Dt

ij (Fig. 3).

For evaluation purposes, four sets of demand curves are

generated with δ1%, δ2%, δ3%, and δ4% of days featuring

sharp demand spikes. Here δ4% > δ3% > δ2% > δ1%.

3: Training: In the training phase, to diversify the learning

experience of the agents, demand curves are utilized

based on a design scheme, and 20 agents are trained

independently.

4: Evaluation: 20 trained agents are tested on the test demand

curves and the performance is quantified.

We refer to the agents trained in the described manner

as Adaptive Agents. In addition, we design two analogous

scenarios by making minute changes in Step 2 of the

procedure above: (i) instead of increasing, the product

demands are reduced for a certain percentage of days by

0.50*Dt
ij , and (ii) product demands can randomly increase or
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Fig. 3 (a) Product demand D11 (on a normalized/dummy scale) with zero
mean and a standard deviation of 1% - 2% of Dij ; (b) Example demand

profile of Scenario I, with a certain % of days with an increased demand by
0.50*Dij ; (c) Example demand profile of Scenario II, with a decreased

demand by 0.50*Dij ; (d) Example demand profile of Scenario III, having
days with random increased and decreased demand by 0.50*Dij

decrease by 0.50*Dt
ij . Resulting perturbed product demand,

D11 is shown for these three scenarios in Figs. 3 (b), (c)

and (d) respectively for a certain % of exceptional days in

a year. Fig. 3 (a) specifically demonstrates the effects of

including random noise, as mentioned previously in Step 1 of

the aforementioned procedure. Note that values are presented

on a normalized scale. Throughout, the rest of this paper, these

three types of scenarios are referred as Scenario I, Scenario
II and Scenario III respectively:

TABLE I
DIFFERENT DEMAND SCENARIOS STUDIED IN THIS RESEARCH

Scenario Demand disruptions type
I Sharp Increase

II Sharp Decrease

III Volatile Demand

Please note that although we do not provided the actual values

of δ1%, δ2%, δ3%, and δ4%, they are the same across the three

scenario types.

V. RESULTS

In this section, we discuss the findings from our RL-based

approach. We first compare base agents against a Linear

Programming benchmark for fixed demand scenario and later

discuss the performance of adaptive RL agents.

A. Base Agent comparison with Linear Programming
Benchmark

We train 20 independent base agents, following the

procedure outlined in Section IV B. For comparison purposes,

we formulate the supply chain optimization problem for

constant demand as a Linear Programming (LP) problem

[20]. We deliberately compare the performance of RL against

a global optimization benchmark which is considerably

more challenging than fixed-policy benchmark. However, it

should be noted that during our in-house experimentation,

RL demonstrated its ability to easily surpass fixed-policy

benchmarks.

We model continuous variables for product stock levels in

the warehouses and product amounts shipped to customers,

while capturing product influx and outflux at the warehouses

with material balance constraints. The objective function aims

to maximize the net annual profit. We use Pyomo [19] to

model the problem and GLPK, an open-source mathematical

optimization solver to find the optimal solution. The optimal

shipping Qij of product Pij for all the six products are shown

in Fig. 4 (a). Fig. 4 (b) shows sample product shipping plan

from RL approach. We observe a significant difference in

product shipping patterns between the two approaches, with

the shipping pattern from RL exhibiting far higher noise. The

LP method generates a net profit of 18.7 million USD for the

objective function, whereas the highest profit obtained from

RL was 18.4 million USD, which is still in close proximity

(< 3%).

While the RL method did not outperform the LP method,

it was able to achieve a performance within 3% of the latter.

This result is consistent with the observation that RL may not

always be the most efficient or effective approach for global

optimization problems. However, we note that the strength

of RL lies in its adaptability, which enables it to learn and

adjust to changing environments and objectives. As such, RL

may be a more suitable approach for optimization problems

that require adaptability and flexibility, rather than global

optimization. We present supporting evidence for this assertion

in the next section.

B. Adaptive Agents Comparison with Base Agents

Based on the methodology described in Section IV B, we

train and evaluate RL agents for Scenario I, II, III and compare

the performance of adaptive agents against base agents and

quantify their robustness. In order to ensure reliable statistical

analysis, we again train 20 independent agents for each of

the presented scenarios. Specifically, we compare performance

over two metrics: (i) annual cumulative profit generated, and

(ii) net constraint violation. While the former metric is a key

parameter of interest, the latter indicates the validity of learnt

optimal policy by the agents.

We quantify constraint violation by measuring the deviation

of the variables denoting warehouse product stock levels from

the predefined minimum and maximum storage levels. For a

single RL agent, we first obtain annual timeseries data for

all twelve product stock levels. For a given variable value, we

then calculate the percentage by which the variable violates the
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(a) (b)

Fig. 4 Optimal amount of products shipped Q11, Q12, Q13, Q21, Q22, and Q23 based on (a) linear programming approach, and (b) RL approach

minimum or maximum storage level constraint and accumulate

this as a sum. We repeat the above procedure for the ensemble

of 20 RL agents and maintain a running sum of percentages.

Finally, we normalize the sum of these percentage values by

20 ×365×12 to get an estimate of total constraint violation.

We show the results in Fig. 5, where (a), (b) and (c)

show boxplots for cumulative profits for scenarios I, II and

III respectively, and the constraint violation is shown in

Figs. 5 (d), (e) and (f) respectively. Boxplots are generated

with a sample size of roughly 1000. We draw the following

conclusions:

a) Scenario I: For δ1% peak demand days, base agents

and adaptive agents generate similar median cumulative

profit, though comparatively base agents display significant

distribution spread. The difference, however appears

increasingly pronounced for δ2%, δ3% and δ4% peak demand

days where adaptive agents significantly outperform base

agents which actually fail to generate any profit. Negative

cumulative profit indicates unmet demand. A similar trend

appears to exist for constraint violation as well, where base

agents display sharp increase in constraint violation with

increased percentage of peak demand days. Adaptive agents,

on the other hand perform extremely well and consistently

maintain very little constraint violation.

b) Scenario II: We observe almost identical trends

as Scenario I - adaptive agents largely outperform base

agents. Despite this, there is a small variation: performance

deterioration for higher % of anomalous demand days is

comparatively less than as observed in Scenario I. The same

applies for constraint violation as well. This is consistent with

the fact that increased demand is more likely to add to penalty

incurred and reduced profits.

c) Scenario III: Interestingly, we observe that base

agents perform similar to adaptive agents to a large extent

for this scenario. In fact, based on median cumulative profit,

base agents slightly outperform adaptive agents for δ1%, δ2%

and δ3% of peak or low demand days. For the last case agents

appears to be performing slightly better. Simultaneously, for

extreme cases, base agents display significant dispersion of

outlier data towards one side of the median. The observed

phenomenon can be attributed to the possibility that the

training scheme for the RL agents for this scenario is

excessively challenging, leading to an inability for the agents

to extract meaningful information from the abundant variations

presented in the demand curves during training. As a result,

these agents exhibit similar performance to the base agents

and do not appear to surpass their performance levels by a

significant margin.

VI. CONCLUSION

In conclusion, our research explores the use of

Reinforcement Learning (RL) for supply chain optimization

problems and contributes to the existing knowledge within

this domain. Specifically, we study scenarios with no

stochasticity in product demands and with varying levels

of sharp, single-day variations in product demand. We

used PPO algorithm to train RL agents and use a specific

penalization approach for handling system constraints.

We provide experimental details for training agents that

demonstrate capabilities of devising adaptive policies for
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(a) Scenario I (b) Scenario II (c) Scenario III(a) Scenario I

(d) Scenario I

(b) Scenario II

(e) Scenario II

(c) Scenario III

(f) Scenario III

Fig. 5 Evaluation of base and adaptive agents on test demand curves with δ1%, δ2%, δ3%, and δ4% anomalous demand days (scenarios I, II, III): (a)-(c)
boxplots for cumulative profit, and (d)-(f) boxplots for constraint violation for scenarios I, II, III. Analysis based on 1000 samples, with base agents shown

in black and adaptive agents in gray (positioned right relatively)

dealing with product uncertainty. Results indicate that the

RL approach performs comparably with linear programming

benchmark and provides better adaptability to stochasticity

in product demands. Overall, the results suggest that RL

can be a viable alternative for supply chain optimization

problems, particularly in scenarios with stochasticity in

product demands. Extensions of our work include designing

other training schemes for adaptive RL agents. A future study

can involve exploring other types of variations in the product

demand, e.g., continuous multi-day fluctuations or seasonal

demand patterns.
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