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Abstract—Multiple classifier systems combine several individual 

classifiers to deliver a final classification decision. However, an 
increasingly controversial question is whether such systems can 
outperform the single best classifier, and if so, what form of multiple 
classifiers system yields the most significant benefit. Also, multi-target 
tracking detection using multiple sensors is an important research field 
in mobile techniques and military applications. In this paper, several 
multiple classifiers systems are evaluated in terms of their ability to 
predict a system’s failure or success for multi-sensor target tracking 
tasks. The Bristol Eden project dataset is utilised for this task. 
Experimental and simulation results show that the human activity 
identification system can fulfil requirements of target tracking due to 
improved sensors classification performances with multiple classifier 
systems constructed using boosting achieving higher accuracy rates. 

 
Keywords—Single classifier, machine learning, ensemble 

learning, multi-sensor target tracking. 

I. INTRODUCTION 

O a degree never known before, decision-makers have 
access to a vast amount of data. However, to use this 

information potential, the real-time data streams must not 
overwhelm the human beings involved. On the contrary, the data 
must be fused to high-quality information to provide decision 
support on various hierarchy levels. Being a challenging 
exploitation technology at the standard interface of sensors, 
command and control systems, and the human decision-makers, 
data and information fusion have enormous potential for 
innovative, intelligent, surveillance, reconnaissance systems in 
defence and civilian applications. One such application is the 
integration and fusion of multi-sensor in intelligent systems.  

The topic of multisensory tracking has been of interest to 
researchers for more than 30 years. However, the development 
and successful fielding of multi-sensor tracking systems have 
lagged significantly behind the research activities despite recent 
work by [34]. Using a multi-sensor fusion approach with 
heterogeneous sensors, the information available for tracking 
depends on the sensors detecting the object [23].  

A central concern of these applications is the need to increase 
the predictive accuracy of the tracking decision. An 
improvement inaccuracy or even a fraction of a percentage 
translates into significant future savings in time and costs. Thus, 
there has been an explosion of papers in the machine learning 
(ML) and statistical pattern recognition communities discussing 
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how to combine models or model predictions in recent years.  
Many works in both communities have shown that combining 

(ensemble) individual classifiers effectively improves predictive 
accuracy [2], [3], [9]. In this paper, the performance of several 
multiple classifier systems is evaluated in terms of their ability 
to predict a classifier system’s failure or success in multisensory 
tracking. 

An ensemble is generated by training multiple classifier 
systems for the same task. Their predictions are then combined 
to give an overall predictive accuracy rate. These ensembles can 
be developed in various ways with the resulting output 
combined for classification (for categorical response class 
attribute) and prediction (for numerical class attribute) tasks. 
The most popular training set resampling and variance reduction 
approach for ensemble learning includes changing the cases 
used for training through techniques such as bagging [2], [3], 
boosting [9], stacking [32], changing the features used in 
training [7], introducing randomness in the classifier itself [11].  

Several multi-target tracking techniques have been 
implemented in the literature, including the issue of multiple 
classifier system methods for human activity identification by 
utilising diverse multimodal sensor data and classification 
algorithms [16], [19]-[21]. Specifically, these studies only 
developed protocols to integrate multiple accelerometer sensors 
attached at different body locations, limiting their robust activity 
recognition implementation. Other related works have fused 
information for activity recognition [22], [33], [36], while others 
have utilised smart wireless sensors in an intelligent system [23], 
[29] and biologically inspired methods in human and machine 
vision [30]. 

The paper's contribution is the proposal to use single classifier 
learning (SCL) systems for multi-sensor target tracking (MSTT) 
to help systems engineers execute their tasks. To find out if it 
would be worthwhile to overcome the limitations of SCL and 
their inability to handle more complex tracking situations, we 
then propose using multiple classifier learning (MCL) systems 
to deal with the MSTT problem. For the ensembles to increase 
the performance over that of the individual models, the unique 
models must be accurate individually, and they need to be 
sufficiently diverse. In other words, they need to be sufficiently 
different from each other in terms of which errors were made. 
For this reason, all possible combinations of the number of 
classifiers per ensemble are explored in this paper (i.e., from two 
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classifiers per ensemble to five classifiers). 
To this end, the rest of the paper is organised as follows. We 

place our work into past work in Section II and Section III, 
primarily single classifier systems and later multiple classifier 
systems. Section IV describes the experimental setup and 
learning algorithms. Then in Section V, we discuss the results 
presenting the corresponding conclusions. 

II. SINGLE CLASSIFIERS 

Five base methods of classifier construction were considered 
for our simulation study: artificial neural network (ANN), 
algorithm quasi (AQ) rule induction system, decision tree (DT), 
k-nearest Neighbour (k-NN), Naïve Bayes classifier (NBC) and 
support vector machine (SVM). The five methods are briefly 
described below. 

A. Artificial Neural Network 

ANNs [25], [26] are usually non-parametric approaches (no 
assumptions about the data are made). They are represented by 
connections between a vast number of simple computing 
processors or elements (neurons). They have been used for a 
variety of classification and regression problems. The ANN is 
trained by supplying it with many numerical observations or the 
patterns to be trained (input data pattern) whose corresponding 
classifications (desired output) are known. During training, the 
final sum-of-squares error over the validation data for the 
network is calculated. Then, the selection of the optimum 
number of hidden nodes is made based on this error value. Once 
the network is trained, a new object is classified by sending its 
attribute values to the network's input nodes, applying the 
weights to those values, and computing the values of the output 
units or output unit activations. The assigned class is the one 
with the most significant output unit activation. 

B. Algorithm-Quasi Optimal 

A rule induction version of the Algorithm Quasi-optimal 
(AQ) was proposed initially by Michalski et al. [20] and further 
improved in later research work [20]. This robust ML 
methodology's implementation is based on a concept of a local 
(object-relative) decision reduct from rough set theory. In AQ, 
A is the set of all the characteristics A1, A2, …, An,  whereby the 
seed is a concept member, a positive case. A selector is an 
expression relating to a variable that is a characteristic or a 
decision regarding the value of a variable, such as a 
contradiction of values. The main inspiration of the AQ 
algorithm is the generation of cover for every concept while 
calculating stars and choosing single complexes for the cover 
from those stars. According to [4], the AQ algorithm requires 
calculating conjuncts of incomplete stars. AQ has also been 
applied to solve several problems, including individuals within 
an evolutionary computation framework. 

C. Decision Tree 

The DT algorithm is a supervised learning algorithm that can 
be used for both classification and prediction problems [6], [24]. 
DT is similar to a tree, which starts with the root node and 
expands into branches thereby constructing a tree-like structure. 

DT classifiers are composed of internal nodes representing 
features of a dataset with branches representing decision rules 
and the leaf nodes representing the outcome. belongs to the 
family of supervised learning algorithms. DT classifiers have 
four primary objectives. According to [27], these are to 1) 
classify correctly as much of the training sample as possible; 2) 
generalise beyond the training sample so that unseen samples 
could be classified with as high accuracy as possible; 3) be easy 
to update as more training samples become available (i.e., be 
incremental); 4) and have as simple a structure as possible. 
Objective 1) is highly debatable and, to some extent, conflicts 
with objective 2). Also, not all tree classifiers are concerned with 
objective 3). DTs are non-parametric, and a valuable means of 
representing the logic embodied in software routines. A DT 
takes as input a case or example described by a set of attribute 
values and outputs a Boolean or multi-valued "decision". For 
this paper, we shall stick to the Boolean case.  

D. k-Nearest Neighbour 

Instance-based learning (also known as the k-NN algorithm) 
is one of the most state-of-the-art yet simple ML algorithms used 
for classification and prediction tasks [1]. The nearest neighbour 
(NN) algorithm works by assigning an unclassified sample point 
to classify the nearest of a set of previously classified points. 
First, with the entire training set and test set stored in the 
memory, the k points in the training data that are closest to the 
test value are identified and the distance between all the 
categories is calculated. The Euclidean, Manhattan or Hamming 
distance measures are normally used for this task. The Euclidean 
distance which is computed between the instance and each 
stored training instance whereby the new instance is assigned the 
class of the nearest neighbouring instance is the most commonly 
used method. These k-NNs are then computed, and the new 
instance is assigned the most frequent class among the k 
neighbours. 

E. Support Vector Machine 

The SVM is another supervised machine algorithm that can 
be used for classification or prediction tasks and even outlier 
detection [5], [8], [13]. The SVM algorithm creates the best line 
or decision boundary that segregates n-dimensional space into 
classes so that a new future data point (or vector) can be put in 
the correct category. The best decision boundary is referred to as 
a hyperplane. Thus, SVM finds a hyperplane in an n-
dimensional space (where n is the number of features you have) 
with the value of each feature being the value of a particular 
coordinate that distinctly classifies the data points (vectors). 
Classification is performed by separating the two classes of data 
points from which many possible hyperplanes are chosen. The 
objective is to find a plane with the maximum margin (i.e., the 
maximum distance between data points of both classes). 
Maximising the margin distance provides some reinforcement 
so that future data points can be classified with more confidence.  

III. MULTIPLE CLASSIFIER SYSTEMS 

Multiple classifier systems can be classified into one of three 
architectural types: 1) dynamic classifier selection (DCS); 2) 
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multi-stage (MS); and 3) static parallel (SP). From the three, SP 
is probably the most commonly used architecture. Two or more 
classifiers are developed independently and in parallel [35]. The 
outputs from each classifier are then combined to deliver a final 
classification decision (where the decision is selected from a set 
of possible class labels). A large number of combination 
functions are available. These include majority voting, weighted 
majority voting, the product or sum of model outputs, the 
minimum rule, the maximum rule and Bayesian methods [10], 
[31]. 

For dynamic selection of classifiers, a single classifier is 
selected for each test sample with the goal of finding a subset of 
classifiers to classify the unknown instance. The highest level of 
competence is determined by computed means using several 
methods such as k-NN, clustering or (in some cases) multiple 
training datasets. Based on global performance measures, the 
dominance of one classifier does not necessarily imply entire 
dominance over all other classifiers. Weaker competitors will 
sometimes beat the overall best across some regions [15]. DCS 
problems are typically approached from a global and local 
accuracy perspective [17]. 

The second type of architecture is MS, where the classifiers 
are constructed iteratively. The parameter estimation process 
depends on the classifier's classification properties from 
previous stages at each iteration. Some MS approaches generate 
models that are applied in parallel using the same type of 
combination rules used for SP methods. For example, most 
boosts create weak classifiers combined to make stronger ones 
[28]. 

To set up an ensemble learning method (i.e., multiple 
classifier systems), we first need to select our base models (also 
known as weak learners) to be aggregated. Then, several primary 
meta-algorithms aim to combine vulnerable learners, including 
bagging, boosting, feature selection, randomisation, and 
stacking. For the paper, we only consider bagging, boosting and 
randomisation as our data partitioning techniques. While 
bagging and boosting is based on manipulating the training data 
gave a "base learning algorithm", for randomisation, the 
ensemble is created by randomising the internal decisions made 
by the "base" algorithm. 

IV. EXPERIMENTAL DESIGN 

For the simulation study, five base methods of classifier 
construction were chosen. Each approach utilises a different 
form of parametric estimation/learning; between them, they 
generate various model forms: linear models, density estimation, 
trees and networks, and they are all practically applicable within 
multisensory tracking environments, with known examples of 
their application within the systems engineering industry.  

First, single classifiers were constructed using each state-of-
the-art classification method utilising MATLAB software [19]. 
These were used to provide benchmarks against which various 
multiple classifier systems were assessed. It was evident that the 
benefits of using ensembles could not be achieved by simply 
copying an individual model and combining the individual 
predictions. For this reason, all possible combinations of the 
number of classifiers per ensemble were explored (i.e., from two 

classifiers per ensemble to five classifiers). We define these 
ensembles as ENS5 (for all five classifiers in the ensemble), 
ENS4 (for four classifiers per ensemble), ENS3 (for three 
classifiers per ensemble) and ENS2 (for two classifiers per 
ensemble). The reader should note that within each ensemble, 
there are different combinations of single classifiers. For 
example, ENS4 has three different combinations; ENS3 has six 
different varieties, and ENS2 has 10 different combinations. 

To measure the performance of classifiers, the training set/ 
test set methodology is employed. The Bristol Eden project 
dataset [18] is utilised for this task. Primarily, the data include 
scenarios of short-range surveillance type applications filmed 
under varying illumination conditions. The various scenes have 
people (dressed in civilian dress and camouflage, stationary, 
walking or running, or carrying multiple objects), vehicles, 
foliage and buildings/structures. Each dataset is split randomly 
into 80% training set and 20% testing or validating set for each 
run. The performance of each classifier is then assessed on the 
smoothed classification error rate (which has been shown to 
reduce bias and handles well the issue of a tie between two 
competing classes). 

The fixed-effect model [12], [14] is used to test for statistical 
significance of the main effects (i.e., the five single classifiers; 
twenty multiple classifier systems, three multiple classifier 
architecture and three resampling procedures) versus their 
respective interactions. Each experiment is replicated five times 
making it a total of 5 x 20 x 3 x 3 x 5 = 4500 experiments. 

V. EXPERIMENTAL RESULTS & FINDINGS 

The results are summarised in Figs. 1-4 regarding smoothed 
error rates against the baseline classifiers (BASE) and their 
respective ensembles (ENS5, ENS4, ENS3, ENS2). DCSs that 
look to segment the population in several sub-regions are 
consistently poor performers, with all the experiments yielding 
inferior results to the single best classifier. However, the 
performance of most SP and MS combination strategies 
provides statistically significant improvements over the single 
best classifier.  

From Fig. 1, it follows that DT is the best technique with a 
smoothed error rate of 29.6%. The second best method is k-NN, 
followed by ANN and SVM with smoothed error rates of 31.1%, 
33.7%, and 34.1%. Finally, the worst performance is by AQ, 
with a smoothed error rate increase of 35.8%.  

The results of the interaction effect (which was found to be 
statistically significant at the 5% level of significance) between 
MCL systems, architectures and resampling procedures are 
displayed in Figs. 2-5. It follows that all multiple classifier 
systems perform differently from each other, with significant 
smoothed error rate increases observed for ensembles with five 
or four classifiers compared to those with three or two classifiers 
per ensemble.  
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Fig. 1 Single classifiers 
 

The results summarised in Fig. 2 show multiple classifier 
systems achieving higher accuracy rates when bagging is used 
as a sampling procedure followed by boosting and 
randomisation, respectively. Also, the experimental results of 
the three architectures used when constructing MCL systems 
show static-parallel exhibiting higher error rates than dynamic 
classifier systems and MS design. However, this is the only 
ensemble (ENS5) that outperformed individual classifiers for 
target tracking purposes, especially for static-parallel 
architecture.  

 

 

Fig. 2 Multiple classifier systems (5 members) 
 

From Fig. 3, the effect of the sampling procedures on learning 
an ensemble with only four classifier members (i.e., ENS4) is 
prominent. The best overall performance is when bagging is 
used with a dynamic classifier system architecture, while the 
worst performance is when randomisation is used with SP 
architecture. In contrast, the best performance is observed when 
the ANN, AQ, DT, and SVM are the ensemble's four 
components. It also appears that the combination of AQ, DT and 
SVM makes the ensemble more accurate. Nonetheless, an ANN 
ensemble, AQ, DT, and k-NN exhibit the worst performance. 

 

 

Fig. 3 Multiple classifier system (4 members) 
 

For the DCS system, good performances by bagging and 
boosting are observed. At the same time, randomisation 

continues to struggle and achieves the worst performance, 
especially when AQ, DT and SVM are components of the 
ensemble and bagging is used as a sampling procedure (Fig. 4). 
The best performing ensemble is when the ANN, AQ and SVM 
are components. The worst is when the AQ, DT and SVM are 
components of the ensemble. It also appears that any ensemble 
with at least the AQ as a member achieves good results. 

 

 

Fig. 4 Multiple classifier system (3 members) 
 

The ensemble learning methods with two members (Fig. 5) 
are nearly identical to those observed for ensembles with three 
members. All ensembles achieve higher accuracy rates when 
bagging and boosting are used. Otherwise, the performance of 
all the methods, on average, worsens when randomisation is 
used. The best performing ensemble is the AQ and k-NN, while 
the worst is the combination of an ANN an AQ (randomisation). 
For stacking, the ensemble of an ANN, k-NN and NBCs proves 
to be the worst-performing method. 

 

 

Fig. 5 Multiple classifier systems (2 members) 

VI. REMARKS AND CONCLUSION 

In multi-sensor data fusion, integrating multi-sensor 
observation data with different observation errors to achieve 
more accurate positioning of the target has never been so 
important in the information fusion community. Our paper aims 
to investigate the impact of multiple classifier systems for MSTT 
purposes for human activity identification.  

Open questions related to predicting with confidence 
addressed include: how can data be utilised effectively to 
achieve more efficient confidence-based predictions using 
ensemble classifiers? To this end, the significant contributions 
of the paper include showing the robustness of single classifiers 
for MSTT and further show how MCL systems provide 
statistically significant improvements in performance over the 
single best classifier.  

DCS that looks to segment the population in several sub-
regions is a consistently good performer. All the experiments 
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(except for the ensemble with all the classifiers as components) 
yield inferior to the single best classifier. However, the 
performance of MS combination strategies provides statistically 
significant improvements over the single best classifier. 
Ensembles with a combination of three classifiers outperformed 
the other MCL systems, with randomisation being a poor 
performer compared to other resampling procedures such as 
bagging or boosting. The most exciting result is bagging 
performance, which consistently outperformed all other multiple 
classifier systems, especially for ensembles with a combination 
of three single classifiers. 

In sum, this research provides an effective and efficient 
approach to track targets, especially human activity. Since target 
tracking is a costly and lengthy process, it is often delayed 
because of the difficulty of tracking a target in a given 
environment. With the help of ensemble learning, human 
activity can be accurately guided early to prevent the situation 
from getting any worse and reduce costs associated with delayed 
target tracking.  
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