Search results for: vapor-grown carbon fiber
249 Deactivation of Cu - Cr/γ-alumina Catalysts for Combustion of Exhaust Gases
Authors: Krasimir Ivanov, Dimitar Dimitrov, Boyan Boyanov
Abstract:
The paper relates to a catalyst, comprising copperchromium spinel, coated on carrier γ-Al2O3. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. It was found that the activity of carbon monoxide, DME, formaldehyde and methanol oxidation reaches a maximum at an active component content of 20 – 30 wt. %. Temperature calcination at 500oC seems to be optimal for the γ– alumina supported CuO-Cr2O3 catalysts for CO, DME, formaldehyde and methanol oxidation. A three months industrial experiment was carried out to elucidate the changes in the catalyst composition during industrial exploitation of the catalyst and the main reasons for catalyst deactivation. It was concluded that the CuO–Cr2O3/γ–alumina supported catalysts have enhanced activity toward CO, DME, formaldehyde and methanol oxidation and that these catalysts are suitable for industrial application. The main reason for catalyst deactivation seems to be the deposition of iron and molybdenum, coming from the main reactor, on the active component surface.Keywords: catalyst deactivation, CuO-Cr2O3 catalysts, deep oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4511248 Biodiesel as an Alternative Fuel for Diesel Engines
Authors: F. Halek, A. Kavousi, M. Banifatemi
Abstract:
There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) was investigated in this work. Conditions for esterification process of rapeseed oil were 1.8 % H2SO4 as catalyst, MeOH/oil of molar ratio 2 : 0.1 and reaction temperature 65 °C, for a period of 3h. The yield of methyl ester was > 90 % in 1 h. The amount of FFA was reduced from 93 wt % to less than 2 wt % at the end of the esterification process. The FAME was pureed by neutralization with 1 M sodium hydroxide in water solution at a reaction temperature of 62 °C. The final FAME product met with the biodiesel quality standard, and ASTM D 6751.Keywords: Alternative Fuels, Biodiesel, Fatty Acid, MethylEster, Seed Oil, Transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108247 Architecture for Smart Cities’ Sustainable Modular Houses
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
Smart cities are a framework of technologies along with sustainable infrastructure to provide their citizens an improved quality of life, safer environment, affordability, and more, which in turn helps with the society's economic growth. The proposed research will focus on the primary building block of the smart city; the infrastructure of the house itself. The traditional method of building houses has been, for a long time, nothing but a costly manufacturing process, and consequently, buying a house becomes not an option for everyone anymore. The smart cities' Modular Houses are not using traditional building construction materials; the design reduces the common lengthy construction times and associated high costs. The Modular Houses are technological homes, low-cost and customizable based on a family's requirements. In addition, the Modular Houses are environmentally friendly and healthy enough to assist with the pandemic situation.
Keywords: Smart cities, modular houses, single-unit property, multi-unit property, mobility features, chain-supply, livable environment, carbon footprint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 318246 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays
Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov
Abstract:
Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270245 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion
Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng
Abstract:
This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.Keywords: Alumina, titania, nano-tubular, film, CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569244 Disclosing the Relationship among CO2 Emissions, Energy Consumption, Economic Growth and Bilateral Trade between Singapore and Malaysia: An Econometric Analysis
Authors: H. A. Bekhet, T. Yasmin
Abstract:
The aim of this paper is to examine the relationship among CO2 per capita emissions, energy consumption, economic growth and bilateral trade between Singapore and Malaysia for the 1970-2011 period. ARDL model and Granger causality tests are employed for the analysis. Results of bound F-statistics suggest that long-run relationship exists between CO2 per capita (PCO2) and its determinants. The EKC hypothesis is not supported in Malaysia. Carbon emissions are mainly determined by energy consumption in the short and long run. While, exports to Singapore is a significant variable in explaining PCO2 emissions in Malaysia in long-run. Furthermore, we find a unidirectional causal relationship running from economic growth to PCO2 emissions.
Keywords: ADRL Bound Test, Bilateral trade, CO2 emission, Environmental Kuznets Curve, Energy consumption, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651243 Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt
Authors: S.T. El Sheltawy, A. A. Refaat
Abstract:
Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.Keywords: climate change, climate policy, cnergy policy, energy security, sustainable development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788242 Improving Water Productivity of Chickpea by the Use of Deficit Irrigation with Treated Domestic Wastewater
Authors: Hirich A., Choukr-allah R., Jacobsen S-E., Hamdy A., El youssfi L., El Omari H.
Abstract:
An experiment was performed in the south of Morocco in order to evaluate the effect of deficit irrigation by treated wastewater on chickpea production. We applied six irrigation treatments on a local variety of chickpea by supplying alternatively 50 or 100% of ETm in a completely randomized design. We found a highly significant difference between treatments in terms of biomass production. Drought stress during the vegetative period showed highest yield with 6.5 t/ha which was more than the yield obtained for the control (4.9 t/ha). The optimal crop stage in which deficit irrigation can be applied is the vegetative growth stage, as the crop has a chance to develop its root system, to be able to cover the plant needs for water and nutrient supply during the rest of cycle, and non stress conditions during the flowering and seed filling stages allow the plant to optimize its photosynthesis and carbon translocation, therefore increase its productivity.Keywords: chickpea, crop stages, drought stress, water productivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521241 Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading
Authors: Nasim Daemi, Gholam Hossein Majzoobi
Abstract:
In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.Keywords: fatigue life, Mason-Caffin method, notchedspecimen, stress-life curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950240 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling
Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali
Abstract:
This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.Keywords: Laser-sintered material, tool life, wear mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888239 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041238 Removal of Pharmaceutical Compounds by a Sequential Treatment of Ozonation Followed by Fenton Process: Influence of the Water Matrix
Authors: Almudena Aguinaco, Olga Gimeno, Fernando J. Beltrán, Juan José P. Sagasti
Abstract:
A sequential treatment of ozonation followed by a Fenton or photo-Fenton process, using black light lamps (365 nm) in this latter case, has been applied to remove a mixture of pharmaceutical compounds and the generated by-products both in ultrapure and secondary treated wastewater. The scientifictechnological innovation of this study stems from the in situ generation of hydrogen peroxide from the direct ozonation of pharmaceuticals, and can later be used in the application of Fenton and photo-Fenton processes. The compounds selected as models were sulfamethoxazol and acetaminophen. It should be remarked that the use of a second process is necessary as a result of the low mineralization yield reached by the exclusive application of ozone. Therefore, the influence of the water matrix has been studied in terms of hydrogen peroxide concentration, individual compound concentration and total organic carbon removed. Moreover, the concentration of different iron species in solution has been measured.Keywords: Fenton, photo-Fenton, ozone, pharmaceutical compounds, hydrogen peroxide, water treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844237 Optimization of Material Removal Rate in Electrical Discharge Machining Using Fuzzy Logic
Authors: Amit Kohli, Aashim Wadhwa, Tapan Virmani, Ujjwal Jain
Abstract:
The objective of present work is to stimulate the machining of material by electrical discharge machining (EDM) to give effect of input parameters like discharge current (Ip), pulse on time (Ton), pulse off time (Toff) which can bring about changes in the output parameter, i.e. material removal rate. Experimental data was gathered from die sinking EDM process using copper electrode and Medium Carbon Steel (AISI 1040) as work-piece. The rules of membership function (MF) and the degree of closeness to the optimum value of the MMR are within the upper and lower range of the process parameters. It was found that proposed fuzzy model is in close agreement with the experimental results. By Intelligent, model based design and control of EDM process parameters in this study will help to enable dramatically decreased product and process development cycle times.Keywords: Electrical discharge Machining (EDM), Fuzzy Logic, Material removal rate (MRR), Membership functions (MF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749236 Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid
Authors: M. S. M. Yusof, R. Ramli, S. K. C. Soh, N. Ismail, N. Ngah
Abstract:
This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.
Keywords: Methoxybenzoyl isothiocyanate, amino acid, threonine, antibacterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925235 Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step
Authors: Alireza Mortezaei, Kimia Mortezaei
Abstract:
Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.
Keywords: Seismic evaluation, FRP, neural network, near-fault ground motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739234 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource
Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib
Abstract:
Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, biooil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudostem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.
Keywords: Banana Waste, Biomass, Renewable Energy, Thermo-chemical Characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8753233 Creeping Insulation - Hong Kong Green Wall
Authors: X. L. Zhang, K. L. Li, R. M. Skitmore
Abstract:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.
The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Keywords: Case studies, experiment, green wall, Hong Kong.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240232 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel
Authors: K. Rattanachan
Abstract:
In sheet metal forming process, raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloyed, which have the different unit cell, mechanical property and chemical composition. They were forming into cone shape specimens having 100 mm diameter with different wall’s incline angle: 90o, 75o and 60o. The investigation was continued until the specimens formed surface facture. The experimental result showed that the smaller the wall incline angle higher the formability with the both materials. The formability limit of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 has higher formability than SUS 304. This result can be used as the initial data in designing the single point incremental forming parts.
Keywords: NC incremental forming, Single point incremental forming, Wall incline angle, Formability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686231 Culture of Oleaginous Yeasts in Dairy Industry Wastewaters to Obtain Lipids Suitable for the Production of II-Generation Biodiesel
Authors: Domenico Pirozzi, Angelo Ausiello, Gaetano Zuccaro, Filomena Sannino, Abu Yousuf
Abstract:
The oleaginous yeasts Lipomyces starkey were grown in the presence of dairy industry wastewaters (DIW). The yeasts were able to degrade the organic components of DIW and to produce a significant fraction of their biomass as triglycerides. When using DIW from the Ricotta cheese production or residual whey as growth medium, the L. starkey could be cultured without dilution nor external organic supplement. On the contrary, the yeasts could only partially degrade the DIW from the Mozzarella cheese production, due to the accumulation of a metabolic product beyond the threshold of toxicity. In this case, a dilution of the DIW was required to obtain a more efficient degradation of the carbon compounds and an higher yield in oleaginous biomass. The fatty acid distribution of the microbial oils obtained showed a prevalence of oleic acid, and is compatible with the production of a II generation biodiesel offering a good resistance to oxidation as well as an excellent cold-performance.Keywords: Yeasts, Lipids, Biodiesel, Dairy industry wastewaters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078230 Experimental Comparison of Combustion Characteristic and Pollutant Emission of Gas Oil and Biodiesel
Authors: S. Baghdar Hosseini, K. Bashirnezhad, A. R. Moghiman, Y. Khazraii, N. Nikoofal
Abstract:
The increasing industrialization and motorization of the world has led to a steep rise for the demand of petroleum-based fuels. Petroleum-based fuels are obtained from limited reserves. These finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these resources are facing energy/foreign exchange crisis, mainly due to the import of crude petroleum. Hence, it is necessary to look for alternative fuels which can be produced from resources available locally within the country such as alcohol, biodiesel, vegetable oils etc. Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from combustion. In the present study an experimental investigation on emission characteristic of a liquid burner system operating on several percentage of biodiesel and gas oil is carried out. Samples of exhaust gas are analysed with Testo 350 Xl. The results show that biodiesel can lower some pollutant such as CO, CO2 and particulate matter emissions while NOx emission would increase in comparison with gas oil. The results indicate there may be benefits to using biodiesel in industrial processes.
Keywords: Biodiesel, combustion, gas oil, pollutant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355229 The Effect of Vibration on the Absorption of CO2 with Chemical Reaction in Aqueous Solution of Calcium Hydroxide
Authors: B. Sohbi, M. Emtir, M. Elgarni
Abstract:
An interesting method to produce calcium carbonate is based in a gas-liquid reaction between carbon dioxide and aqueous solutions of calcium hydroxide. The design parameters for gas-liquid phase are flow regime, individual mass transfer, gas-liquid specific interfacial area. Most studies on gas-liquid phase were devoted to the experimental determination of some of these parameters, and more specifically, of the mass transfer coefficient, kLa which depends fundamentally on the superficial gas velocity and on the physical properties of absorption phase. The principle investigation was directed to study the effect of the vibration on the mass transfer coefficient kLa in gas-liquid phase during absorption of CO2 in the in aqueous solution of calcium hydroxide. The vibration with a higher frequency increase the mass transfer coefficient kLa, but vibration with lower frequency didn-t improve it, the mass transfer coefficient kLa increase with increase the superficial gas velocity.
Keywords: Environment technology, mass transfer coefficient, absorption, CO2, calcium hydroxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816228 Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida
Authors: Shou-Chen Lo, Chia-Ching Lin, Chieh-Chen Huang
Abstract:
To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.
Keywords: cytochrome P450, halorespiration, nitrogen fixation, Rhodopseudomonas palustris CGA009
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948227 Soil Compaction in Tropical Organic Farming Systems and Its Impact on Natural Soil-Borne Disease Suppression: Challenges for Management
Authors: Ishak, L., McHenry, M. T., Brown, P. H.
Abstract:
Organic farming systems still depend on intensive, mechanical soil tillage. Frequent passes by machinery traffic cause substantial soil compaction that threatens soil health. Adopting practices as reduced tillage and organic matter retention on the soil surface are considered effective ways to control soil compaction. In tropical regions, however, the acceleration of soil organic matter decomposition and soil carbon turnover on the topsoil layer is influenced more rapidly by the oscillation process of drying and wetting. It is hypothesized therefore, that rapid reduction in soil organic matter hastens the potential for compaction to occur in organic farming systems. Compaction changes soil physical properties and as a consequence it has been implicated as a causal agent in the inhibition of natural disease suppression in soils. Here we describe relationships between soil management in organic vegetable systems, soil compaction, and declining soil capacity to suppress pathogenic microorganisms.
Keywords: Organic farming systems, soil compaction, soil disease suppression, tropical regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167226 Detection of Transgenes in Cotton (Gossypium hirsutum L.) by Using Biotechnology/Molecular Biological Techniques
Authors: Ahmad Ali Shahid, Muhammad Shakil Shaukat, Kamran Shehzad Bajwa, Abdul Qayyum Rao, Tayyab Husnain
Abstract:
Agriculture is the backbone of economy of Pakistan and cotton is the major agricultural export and supreme source of raw fiber for our textile industry. To combat severe problems of insect and weed, combination of three genes namely Cry1Ac, Cry2A and EPSPS genes was transferred in locally cultivated cotton variety MNH-786 with the use of Agrobacterium mediated genetic transformation. The present study focused on the molecular screening of transgenic cotton plants at T3 generation in order to confirm integration and expression of all three genes (Cry1Ac, Cry2A and EPSP synthase) into the cotton genome. Initially, glyphosate spray assay was used for screening of transgenic cotton plants containing EPSP synthase gene at T3 generation. Transgenic cotton plants which were healthy and showed no damage on leaves were selected after 07 days of spray. For molecular analysis of transgenic cotton plants in the laboratory, the genomic DNA of these transgenic cotton plants were isolated and subjected to amplification of the three genes. Thus, seventeen out of twenty (Cry1Ac gene), ten out of twenty (Cry2A gene) and all twenty (EPSP synthase gene) were produced positive amplification. On the base of PCR amplification, ten transgenic plant samples were subjected to protein expression analysis through ELISA. The results showed that eight out of ten plants were actively expressing the three transgenes. Real-time PCR was also done to quantify the mRNA expression levels of Cry1Ac and EPSP synthase gene. Finally, eight plants were confirmed for the presence and active expression of all three genes at T3 generation.
Keywords: Agriculture, Cotton, Transformation, Cry Genes, ELISA and PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3138225 Seawater Desalination for Production of Highly Pure Water Using a Hydrophobic PTFE Membrane and Direct Contact Membrane Distillation (DCMD)
Authors: Ahmad Kayvani Fard, Yehia Manawi
Abstract:
Qatar’s primary source of fresh water is through seawater desalination. Amongst the major processes that are commercially available on the market, the most common large scale techniques are Multi-Stage Flash distillation (MSF), Multi Effect distillation (MED), and Reverse Osmosis (RO). Although commonly used, these three processes are highly expensive down to high energy input requirements and high operating costs allied with maintenance and stress induced on the systems in harsh alkaline media. Beside that cost, environmental footprint of these desalination techniques are significant; from damaging marine eco-system, to huge land use, to discharge of tons of GHG and huge carbon footprint. Other less energy consuming techniques based on membrane separation are being sought to reduce both the carbon footprint and operating costs is membrane distillation (MD). Emerged in 1960s, MD is an alternative technology for water desalination attracting more attention since 1980s. MD process involves the evaporation of a hot feed, typically below boiling point of brine at standard conditions, by creating a water vapor pressure difference across the porous, hydrophobic membrane. Main advantages of MD compared to other commercially available technologies (MSF and MED) and specially RO are reduction of membrane and module stress due to absence of trans-membrane pressure, less impact of contaminant fouling on distillate due to transfer of only water vapor, utilization of low grade or waste heat from oil and gas industries to heat up the feed up to required temperature difference across the membrane, superior water quality, and relatively lower capital and operating cost. To achieve the objective of this study, state of the art flat-sheet cross-flow DCMD bench scale unit was designed, commissioned, and tested. The objective of this study is to analyze the characteristics and morphology of the membrane suitable for DCMD through SEM imaging and contact angle measurement and to study the water quality of distillate produced by DCMD bench scale unit. Comparison with available literature data is undertaken where appropriate and laboratory data is used to compare a DCMD distillate quality with that of other desalination techniques and standards. Membrane SEM analysis showed that the PTFE membrane used for the study has contact angle of 127º with highly porous surface supported with less porous and bigger pore size PP membrane. Study on the effect of feed solution (salinity) and temperature on water quality of distillate produced from ICP and IC analysis showed that with any salinity and different feed temperature (up to 70ºC) the electric conductivity of distillate is less than 5 μS/cm with 99.99% salt rejection and proved to be feasible and effective process capable of consistently producing high quality distillate from very high feed salinity solution (i.e. 100000 mg/L TDS) even with substantial quality difference compared to other desalination methods such as RO and MSF.
Keywords: Membrane Distillation, Waste Heat, Seawater Desalination, Membrane, Freshwater, Direct Contact Membrane Distillation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4151224 Scale, Technique and Composition Effects of CO2 Emissions under Trade Liberalization of EGS: A CGE Evaluation for Argentina
Authors: M. Priscila Ramos, Omar O. Chisari, Juan Pablo Vila Martínez
Abstract:
Current literature about trade liberalization of environmental goods and services (EGS) raises doubts about the extent of the triple win-win situation for trade, development and the environment. However, much of this literature does not consider the possibility that this agreement carries technological transmissions, either through trade or foreign direct investment. This paper presents a computable general equilibrium model calibrated for Argentina, where there are alternative technologies (one dirty and one clean according to carbon emissions) to produce the same goods. In this context, the trade liberalization of EGS allows to increase GDP, trade, reduce unemployment and improve the households welfare. However, the capital mobility appears as the key assumption to jointly reach the environmental target, when the positive scale effect generated by the increase in trade is offset by the change in the composition of production (composition and technical effects by the use of the clean alternative technology) and of consumption (composition effect by substitution of relatively lesspolluting imported goods).Keywords: CGE modeling, CO2 emissions, composition effect, scale effect, technique effect, trade liberalization of EGS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874223 Simulation of Enhanced Biomass Gasification for Hydrogen Production using iCON
Authors: Mohd K. Yunus, Murni M. Ahmad, Abrar Inayat, Suzana Yusup
Abstract:
Due to the environmental and price issues of current energy crisis, scientists and technologists around the globe are intensively searching for new environmentally less-impact form of clean energy that will reduce the high dependency on fossil fuel. Particularly hydrogen can be produced from biomass via thermochemical processes including pyrolysis and gasification due to the economic advantage and can be further enhanced through in-situ carbon dioxide removal using calcium oxide. This work focuses on the synthesis and development of the flowsheet for the enhanced biomass gasification process in PETRONAS-s iCON process simulation software. This hydrogen prediction model is conducted at operating temperature between 600 to 1000oC at atmospheric pressure. Effects of temperature, steam-to-biomass ratio and adsorbent-to-biomass ratio were studied and 0.85 mol fraction of hydrogen is predicted in the product gas. Comparisons of the results are also made with experimental data from literature. The preliminary economic potential of developed system is RM 12.57 x 106 which equivalent to USD 3.77 x 106 annually shows economic viability of this process.Keywords: Biomass, Gasification, Hydrogen, iCON.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607222 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor
Authors: Junior B. N. Adohinzin, Ling Xu
Abstract:
Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen.
Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.
Keywords: Membrane bioreactor (MBR), Moving bed biofilm reactor (MBBR), Nutrients removal, Simultaneous nitrification and denitrification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495221 Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste
Authors: Phakamas Rachamontree, Theerawut Phusantisampan, Natthakorn Woravutthikul, Peerapong Pornwongthong, Malinee Sriariyanun
Abstract:
A total of 115 yeast strains isolated from local cassava processing wastes were measured for crude protein content. Among these strains, the strain MSY-2 possessed the highest protein concentration (>3.5 mg protein/mL). By using molecular identification tools, it was identified to be a strain of Pichia kudriavzevii based on similarity of D1/D2 domain of 26S rDNA region. In this study, to optimize the protein production by MSY-2 strain, Response Surface Methodology (RSM) was applied. The tested parameters were the carbon content, nitrogen content, and incubation time. Here, the value of regression coefficient (R2) = 0.7194 could be explained by the model which is high to support the significance of the model. Under the optimal condition, the protein content was produced up to 3.77 g per L of the culture and MSY-2 strain contains 66.8 g protein per 100 g of cell dry weight. These results revealed the plausibility of applying the novel strain of yeast in single-cell protein production.Keywords: Single cell protein, response surface methodology, yeast, cassava processing waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680220 Experimental Investigation on Activated Carbon Based Cryosorption Pump
Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek
Abstract:
Cryosorption pumps are considered safe, quiet, and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon, and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.Keywords: Adhesive, cryopanel, granules, pellets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021