Search results for: Relevance Vector Regression.
594 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: Integral differential equations, American options, jump–diffusion model, rational approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563593 Biomechanics Analysis of Bicross Start
Authors: M. Kalichová, S. Hřebíčková, R. Labounková, P. Hedbávný, G. Bago
Abstract:
The article deals with a biomechanics analysis of the classic bicross start with a backward movement of the bike. This is a case study analyzing this type of start in two bicross riders representing the Czech Republic. Based on the 3D kinematic analysis and with a special emphasis on the ankle movement we have divided the start into five phases – phase n. 1 – reaction time, phase n. 2 – preparation movements time, phase n. 3 – first pedal stroke time, phase n. 4 – dead point pedal passage time, phase n. 5 – second pedal stroke time. Further we have demonstrated the significance of kinematic characteristics in various stages of the bicross start including their values and the extent of change. These primarily include the vector of the instantaneous velocity of the head, wrists, elbows, shoulders, hip and knee joints. The significant angle characteristics have been noted in elbow, shoulder, hip and knee joints. The results of this work indicate the types of movement prevailing in the respective phases and as such are expected to serve as a basis for further analyses of this movement structure performed, however, on a large research sample.
Keywords: Bicross, start, kinematic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579592 Fast Search for MPEG Video Clips Using Adjacent Pixel Intensity Difference Quantization Histogram Feature
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we propose a novel fast search algorithm for short MPEG video clips from video database. This algorithm is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Instead of fully decompressed video frames, partially decoded data, namely DC images are utilized. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 3 % is achieved, which is more accurately and robust than conventional fast video search algorithm.
Keywords: Fast search, adjacent pixel intensity difference quantization (APIDQ), DC image, histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580591 The Effect of Insurance on Foreign Direct Investments Inflow to Nigeria
Authors: Chimaobi V. Okolo, Afamefuna J. Ani, Ebere U. Okolo
Abstract:
This paper seeks to assess the implications of insurance to foreign direct investment inflow in Nigeria. Multiple linear regression technique and correlation matrix test were employed to measure the extent to which foreign direct investment was influenced. The result showed that insurance premium (IP), asset size of insurance industry (AS), and total investment of the industry (TI) impacted significantly and positively on foreign direct investment inflow in Nigeria. There should be effective risk transfer mechanism and financial intermediation, which gives the investor confidence in the risk management strength of the host country.Keywords: Foreign direct investment, insurance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3050590 Rotorcraft Performance and Environmental Impact Evaluation by Multidisciplinary Modelling
Authors: Pierre-Marie Basset, Gabriel Reboul, Binh DangVu, Sébastien Mercier
Abstract:
Rotorcraft provides invaluable services thanks to their Vertical Take-Off and Landing (VTOL), hover and low speed capabilities. Yet their use is still often limited by their cost and environmental impact, especially noise and energy consumption. One of the main brakes to the expansion of the use of rotorcraft for urban missions is the environmental impact. The first main concern for the population is the noise. In order to develop the transversal competency to assess the rotorcraft environmental footprint, a collaboration has been launched between six research departments within ONERA. The progress in terms of models and methods are capitalized into the numerical workshop C.R.E.A.T.I.O.N. “Concepts of Rotorcraft Enhanced Assessment Through Integrated Optimization Network”. A typical mission for which the environmental impact issue is of great relevance has been defined. The first milestone is to perform the pre-sizing of a reference helicopter for this mission. In a second milestone, an alternate rotorcraft concept has been defined: a tandem rotorcraft with optional propulsion. The key design trends are given for the pre-sizing of this rotorcraft aiming at a significant reduction of the global environmental impact while still giving equivalent flight performance and safety with respect to the reference helicopter. The models and methods have been improved for catching sooner and more globally, the relative variations on the environmental impact when changing the rotorcraft architecture, the pre-design variables and the operation parameters.Keywords: Environmental impact, flight performance, helicopter, rotorcraft pre-sizing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499589 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate
Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina
Abstract:
The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568588 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415587 Emotional Intelligence and Retention: The Moderating Role of Job Involvement
Authors: Mahfuz Judeh
Abstract:
The main aim of the current study was to examine the effect of emotional intelligence on retention. The study also aimed at analyzing the role of job involvement, as a moderator, in the effect of emotional intelligence on retention. Using data gathered from 241 employees working with hotels and tourism corporations listed in Amman Stock Exchange in Jordan, emotional intelligence, job involvement and retention were measured. Hierarchical regression analyses were used to test the three main hypotheses. Results indicated that retention was related to emotional intelligence. Moreover, the study yielded support for the claim that job involvement had a moderating effect on the relationship between emotional intelligence and retention.Keywords: Emotional Intelligence, Job Involvement, Jordan, Retention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4614586 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators
Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph
Abstract:
A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.
Keywords: Metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2585585 Swarmed Discriminant Analysis for Multifunction Prosthesis Control
Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily
Abstract:
One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557584 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing
Authors: M. Tamilarasi, T.G. Palanivelu
Abstract:
Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964583 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: Keywords—Identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301582 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength, and corrosion resistance. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: Hardness, RSM, sputtering, TiN XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581581 Dyadic Adjustment as a Mediator of the Relationship between Attachment, Attributional Style, and Violence in Male Batterers
Authors: Hélène Brisebois, Claude Bélanger, Marie-Pier Léger-Bélanger, Valérie Lamontagne
Abstract:
This study examines the mediating effects of male dyadic adjustment on the relationships between attachment and attributional styles, and both psychological and physical husband violence. Based on data from 68 married violent men recruited through community organizations that work with violent men, regression analyses showed that husbands- dyadic adjustment mediates the associations between avoidant attachment and attributional style, and psychological aggression, but not physical violence. Scientific and clinical implications are discussedKeywords: Attachment, attributions, dyadic adjustment, marital violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807580 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma
Authors: A. Abdikian
Abstract:
Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368579 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves
Authors: Angel Pérez Sánchez
Abstract:
Considering magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. The concept was explored by examining the behavior of two parallel electric current cables, which attract each other when the current goes in the same direction, and its application at a microscopic level inside magnets. Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. This groundbreaking study discovers how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.
Keywords: Magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71578 Simulation Model for Predicting Dengue Fever Outbreak
Authors: Azmi Ibrahim, Nor Azan Mat Zin, Noraidah Sahari Ashaari
Abstract:
Dengue fever is prevalent in Malaysia with numerous cases including mortality recorded over the years. Public education on the prevention of the desease through various means has been carried out besides the enforcement of legal means to eradicate Aedes mosquitoes, the dengue vector breeding ground. Hence, other means need to be explored, such as predicting the seasonal peak period of the dengue outbreak and identifying related climate factors contributing to the increase in the number of mosquitoes. Simulation model can be employed for this purpose. In this study, we created a simulation of system dynamic to predict the spread of dengue outbreak in Hulu Langat, Selangor Malaysia. The prototype was developed using STELLA 9.1.2 software. The main data input are rainfall, temperature and denggue cases. Data analysis from the graph showed that denggue cases can be predicted accurately using these two main variables- rainfall and temperature. However, the model will be further tested over a longer time period to ensure its accuracy, reliability and efficiency as a prediction tool for dengue outbreak.Keywords: dengue fever, prediction, system dynamic, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337577 Double Manifold Sliding Mode Observer for Sensorless Control of Multiphase Induction Machine under Fault Condition
Authors: Mohammad Jafarifar
Abstract:
Multiphase Induction Machine (IM) is normally controlled using rotor field oriented vector control. Under phase(s) loss, the machine currents can be optimally controlled to satisfy certain optimization criteria. In this paper we discuss the performance of double manifold sliding mode observer (DM-SMO) in Sensorless control of multiphase induction machine under unsymmetrical condition (one phase loss). This observer is developed using the IM model in the stationary reference frame. DM-SMO is constructed by adding extra feedback term to conventional single mode sliding mode observer (SM-SMO) which proposed in many literature. This leads to a fully convergent observer that also yields an accurate estimate of the speed and stator currents. It will be shown by the simulation results that the estimated speed and currents by the method are very well and error between real and estimated quantities is negligible. Also parameter sensitivity analysis shows that this method is rather robust against parameter variation.Keywords: Multiphase induction machine, field oriented control, sliding mode, unsymmetrical condition, manifold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820576 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.
Keywords: Land cover change, land surface temperature, normalized difference vegetation index, urban heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458575 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.
Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312574 Low Power and Less Area Architecture for Integer Motion Estimation
Authors: C Hisham, K Komal, Amit K Mishra
Abstract:
Full search block matching algorithm is widely used for hardware implementation of motion estimators in video compression algorithms. In this paper we are proposing a new architecture, which consists of a 2D parallel processing unit and a 1D unit both working in parallel. The proposed architecture reduces both data access power and computational power which are the main causes of power consumption in integer motion estimation. It also completes the operations with nearly the same number of clock cycles as compared to a 2D systolic array architecture. In this work sum of absolute difference (SAD)-the most repeated operation in block matching, is calculated in two steps. The first step is to calculate the SAD for alternate rows by a 2D parallel unit. If the SAD calculated by the parallel unit is less than the stored minimum SAD, the SAD of the remaining rows is calculated by the 1D unit. Early termination, which stops avoidable computations has been achieved with the help of alternate rows method proposed in this paper and by finding a low initial SAD value based on motion vector prediction. Data reuse has been applied to the reference blocks in the same search area which significantly reduced the memory access.
Keywords: Sum of absolute difference, high speed DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493573 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515572 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth
Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari
Abstract:
South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.Keywords: Causality, economic growth, energy consumption, hypothesis, sectoral output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656571 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles
Authors: Omer Nebil Yaveroglu, Tolga Can
Abstract:
In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614570 Clinical Decision Support for Disease Classification based on the Tests Association
Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon
Abstract:
Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635569 Automatic Reusability Appraisal of Software Components using Neuro-fuzzy Approach
Authors: Parvinder S. Sandhu, Hardeep Singh
Abstract:
Automatic reusability appraisal could be helpful in evaluating the quality of developed or developing reusable software components and in identification of reusable components from existing legacy systems; that can save cost of developing the software from scratch. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. In this paper, we have mentioned two-tier approach by studying the structural attributes as well as usability or relevancy of the component to a particular domain. Latent semantic analysis is used for the feature vector representation of various software domains. It exploits the fact that FeatureVector codes can be seen as documents containing terms -the idenifiers present in the components- and so text modeling methods that capture co-occurrence information in low-dimensional spaces can be used. Further, we devised Neuro- Fuzzy hybrid Inference System, which takes structural metric values as input and calculates the reusability of the software component. Decision tree algorithm is used to decide initial set of fuzzy rules for the Neuro-fuzzy system. The results obtained are convincing enough to propose the system for economical identification and retrieval of reusable software components.Keywords: Clustering, ID3, LSA, Neuro-fuzzy System, SVD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663568 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.
Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696567 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis
Abstract:
Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252566 The Relationship between Absorptive Capacity and Green Innovation
Authors: R. Hashim, A. J. Bock, S. Cooper
Abstract:
Absorptive capacity generally facilitates the adoption of innovation. How does this relationship change when economic return is not the sole driver of innovation uptake? We investigate whether absorptive capacity facilitates the adoption of green innovation based on a survey of 79 construction companies in Scotland. Based on the results of multiple regression analyses, we confirm that existing knowledge utilisation (EKU), knowledge building (KB) and external knowledge acquisition (EKA) are significant predictors of green process GP), green administrative (GA) and green technical innovation (GT), respectively. We discuss the implications for theories of innovation adoption and knowledge enhancement associated with environmentally-friendly practices.
Keywords: Absorptive capacity, construction industry, environmental, green innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176565 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287