**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30831

##### Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

**Authors:**
Maurizio Dapor,
Isabel Abril,
Pablo de Vera,
Rafael Garcia-Molina

**Abstract:**

**Keywords:**
monte carlo method,
secondary electrons,
energetic ions,
ion-beam cancer therapy,
ionization cross section,
polymethylmethacrylate,
proton beams,
radial energy distribution

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1125979

**References:**

[1] L. Anchordoqui, T. Paul, S. Reucroft, and J. Swain, “The Neutron Flux Variation in the Earth’s Atmosphere Depending on the Solar Proton Flux”, Int. J. Modern Physics A 18, 2229-2366 (2003).

[2] F. A. Cucinotta, M.-. Y. Kim, L. J. Chappell, J. L. Huff, “How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars”, PLos ONE 8, e74988 (2013).

[3] T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. Eguchi-Kasai, and H. Ohara, “Irradiation of Mixed Beam and Design of Spread-Out Bragg Peak for Heavy-Ion Radiotherapy”, Radiation Research 147, 78-85 (1997).

[4] M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt, and U. Weber, “Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization”, Phys. Med. Biol. 45, 3299-3317 (2000).

[5] I. Turesson, K.-A. Johansson, and S. Mattsson, “The Potential of Proton and Light Ion Beams in Radiotherapy”, Acta Oncologica 42, 107-114 (2003).

[6] A. Brahme, “Recent Advances in Light Ion Radiation Therapy”, International Journal of Radiation Oncology • Biology • Physics 58, 603-616 (2004).

[7] D. Schulz-Ertner and H. Tsujii, “Particle Radiation Therapy using Proton and Heavier Ion Beams”, J. Clinical Oncology 25, 953-964 (2007).

[8] T. Elsässer, W. K. Weyrather, T. Friedrich, M. Durante, G. Iancu, M. Krämer, G. Kragl, S. Brons, M. Winter, K.-J. Weber, M. Scholz, “Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning”, Int. J. Radiation Oncology, Biology, Physics 78, 1177-1183 (2010).

[9] R. Baskar, K. A. Lee, R. Yeo, and K-W. Yeoh, “Cancer and Radiation Therapy: Current Advances and Future Directions”, Int. J. Med. Sci. 9, 193-199 (2012).

[10] E. Surdutovich and A. V. Solov'yov, “Multiscale approach to the physics of radiation damage with ions”, Eur. Phys. J. D 68, 353 (30 pp) (2014).

[11] B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons”, Science 287, 1658-1660 (2000).

[12] X. Pan, P. Cloutier, D. Hunting, and L. Sanche, “Dissociative Electron Attachment to DNA”, Phys. Rev. Lett. 90, 20812 (4 pp) (2003).

[13] M. Dapor, M. Ciappa, and W. Fichtner, “Monte Carlo Modeling in the Low-Energy Domain of the Secondary Electron Emission of Polymethylmethacrylate for Critical Dimension Scanning Electron Microscopy”, J. Micro/Nano MEMS, MOEMS 9, 023001 (9 pp) (2010).

[14] International Commission on Radiation Units and Measurements. Measurement of Dose Equivalents from external photon and electron Radiations. ICRU Report 47. Bethesda, Maryland (1992).

[15] R. Garcia-Molina, I. Abril, S. Heredia-Avalos, I. Kyriakou, and D. Emfietzoglou, “A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water”, Phys. Med. Biol. 56, 6475-6493 (2011).

[16] R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, and D. Emfietzoglou, “Proton beam irradiation of liquid water: A combined molecular dynamics and Monte Carlo simulation study of the Bragg peak profile”, ch. 8 (pp. 271-304) in Fast Ion-Atom and Ion-Molecule Collisions, ed. by, Dž. Belkic (World Scientific Publishing Company, Singapore, 2012).

[17] P. de Vera, I. Abril, and R. Garcia-Molina, to be published (2016).

[18] International Commission on Radiation Units and Measurements. Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, ICRU Report 63. Bethesda, Maryland (2000).

[19] I. Abril, R. Garcia-Molina, C. D. Denton, F. J. Pérez-Pérez, and N. R. Arista, “Dielectric description of wakes and stopping powers in solids”, Phys. Rev. A 58, 357-366 (1998).

[20] S. Heredia-Avalos, R. Garcia-Molina, J. M. Fernández-Varea, and I. Abril, “Calculated energy loss of swift He, Li, B, and N ions in SiO2, Al2O3, and ZrO2”, Phys. Rev. A 72, 052902 (9 pp) (2005).

[21] R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, Biological and Medical Physics, Biomedical Engineering, edited by G. G. Gómez-Tejedor, M. C. Fuss (Springer, Dordrecht, 2012), ch. 15.

[22] P. de Vera, R. Garcia-Molina, I. Abril I, and A. V. Solov’yov, “Semiempirical Model for the Ion Impact Ionization of Complex Biological Media”, Phys. Rev. Lett. 110, 148104 (5 pp) (2013).

[23] N. F. Mott, “The Scattering of Fast Electrons by Atomic Nuclei”, Proc. R. Soc. London Ser. 124, 425-442 (1929).

[24] S.-R. Lin, N. Sherman, and J. K. Percus, “Elastic scattering of relativistic electrons by screened atomic nuclei”, Nucl. Phys. 45, 492-504 (1963).

[25] P. J. Bunyan and J. L. Shonfelder, “Polarization by Mercury of 100 to 2000 eV Electrons”, Proc. Phys. Soc. 85, 455-462 (1965).

[26] F. Salvat and R. Mayol, “Elastic scattering of electrons and positrons by atoms. Schrödinger and Dirac partial wave analysis” Comput. Phys. Commun. 74 , 358-374 (1993).

[27] M. Dapor, “Elastic Scattering Calculations for Electrons and Positrons in Solid Targets”, J. Appl. Phys. 79, 8406-8411 (1996).

[28] M. Dapor, Electron-Beam Interactions with Solids: Applications of the Monte Carlo Method to Electron Scattering Problems, Vol. 186 of Springer Tracts in Modern Physics, Springer, Berlin, 2003.

[29] A. Jablonski, F. Salvat and C. J. Powell, “Comparison of Electron Elastic-Scattering Cross Sections Calculated from Two Commonly Used Atomic Potentials”, J. Phys. Chem. Ref. Data 33, 409-451 (2004).

[30] N. D. Mermin, “Lindhard Dielectric Function in the Relaxation-Time Approximation”, Phys. Rev. B 1, 2362-2363 (1970).

[31] H. Frӧhlich, “Electrons in Lattice Fields”, Adv. Phys. 3, 325-361 (1954).

[32] J. Llacer and E. L. Garwin, “Electron‐Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV”, J. Appl. Phys. 40, 2766-2775 (1969).

[33] J. P. Ganachaud and A. Mokrani, “Theoretical Study of the Secondary Electron Emission of Insulating Targets”, Surf. Sci. 334, 329-341 (1995).

[34] R. Shimizu and Ze-Jun Ding, “Monte Carlo Modelling of Electron-Solid Interactions”, Rep. Prog. Phys. 55, 487-531 (1992).

[35] J. Ch. Kuhr and H. J. Fitting, “Monte Carlo Simulation of Electron Emission from Solids”, J. Electron Spectrosc. Relat. Phenom. 105, 257-273 (1999).

[36] M. Dapor, Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization, Vol. 257 of Springer Tracts in Modern Physics, Springer, Berlin, 2014.

[37] D. C. Joy, M. S. Prasad, H. M. Meyer III, “Experimental Secondary Electron Spectra under SEM Conditions”, Journal of Microscopy 215, 77-85 (2004).

[38] M. Dapor, Appl. Surf. Sci. to be published (2016).

[39] M. Dapor, G.I.T. Imaging & Microscopy, to be published (2016).

[40] P. de Vera, I. Abril, R. Garcia-Molina, “Inelastic Scattering of Electron and Light Ion Beams in Organic Polymers”, J. Appl. Phys. 109, 094901 (8 pp) (2011).

[41] M. Dapor, I. Abril, P. de Vera, and R. Garcia-Molina, “Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: Influence of the target electronic excitation description”, Eur. Phys. J. D 69, 165 (10 pp) (2015).