Search results for: Sustainable energy.
2623 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System
Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari
Abstract:
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.
Keywords: Compound parabolic concentrator, Energy, Photovoltaic thermal, Temperature dependent electrical efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16202622 The Interior Design Proposals of Buildings for Tourism Purposes
Authors: Şebnem Ertaş
Abstract:
“Architecture” is one component of sustainable cultural tourism. The sustainability of architecture is possible through preservation and restoration activities. In Turkey, which has an important place in the world’s cultural heritage, several studies focused on the sustainability of the cultural heritage were done in terms of the principles of “preserve-use-sustain”. Within the scope of this study, a methodology will be proposed in order to obtain the development of different scenarios supporting sustainable tourism. Sille is an ancient village located on the Spice Road and Silk Road dating back to the Ottoman and Seljuk eras. However, in recent years it is protected as an archeological site. In the “Alternative Project Phase”, the streets and buildings which bring dynamism to trade are determined; among these, 10 major buildings in Hacı Ali Ağa Street are studied.
Keywords: Tourism, cultural tourism, sustainability of architecture, interior design, Sille.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18052621 Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control
Authors: Patil Ashwini, Archana Thosar
Abstract:
This paper addresses the mathematical model of wind energy system useful for designing fault tolerant control. To serve the demand of power, large capacity wind energy systems are vital. These systems are installed offshore where non planned service is very costly. Whenever there is a fault in between two planned services, the system may stop working abruptly. This might even lead to the complete failure of the system. To enhance the reliability, the availability and reduce the cost of maintenance of wind turbines, the fault tolerant control systems are very essential. For designing any control system, an appropriate mathematical model is always needed. In this paper, the two-mass model is modified by considering the frequent mechanical faults like misalignments in the drive train, gears and bearings faults. These faults are subject to a wear process and cause frictional losses. This paper addresses these faults in the mathematics of the wind energy system. Further, the work is extended to study the variations of the parameters namely generator inertia constant, spring constant, viscous friction coefficient and gear ratio; on the pole-zero plot which is related with the physical design of the wind turbine. Behavior of the wind turbine during drive train faults are simulated and briefly discussed.
Keywords: Mathematical model of wind energy system, stability analysis, shaft stiffness, viscous friction coefficient, gear ratio, generator inertia, fault tolerant control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19042620 Evolution of Cord Absorbed Dose during of Larynx Cancer Radiotherapy, with 3D Treatment Planning and Tissue Equivalent Phantom
Authors: Mohammad Hassan Heidari, Amir Hossein Goodarzi, Majid Azarniush
Abstract:
Radiation doses to tissues and organs were measured using the anthropomorphic phantom as an equivalent to the human body. When high-energy X-rays are externally applied to treat laryngeal cancer, the absorbed dose at the laryngeal lumen is lower than given dose because of air space, which it should pass through, before reaching the lesion. Specially, in case of high-energy X-rays, the loss of dose is considerable. Three-dimensional absorbed dose distributions have been computed for high-energy photon radiation therapy of laryngeal and hypopharyngeal cancers, using a coaxial pair of opposing lateral beams in fixed positions. Treatment plans obtained under various conditions of irradiation.
Keywords: 3D Treatment Planning, anthropomorphic phantom, larynx cancer, radiotherapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20402619 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency
Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet
Abstract:
This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.
Keywords: Energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622618 Using the Geographic Information System (GIS) in the Sustainable Transportation
Authors: Zahra Gharineiat, Malik Khalfan
Abstract:
The significance of emissions from the road transport sector (such as air pollution, noise, etc) has grown considerably in recent years. In Australia, 14.3% of national greenhouse gas emissions in 2000 were the transport sector-s share which 12.9% of net national emissions were related to a road transport alone. Considering the growing attention to the green house gas(GHG) emissions, this paper attempts to provide air pollution modeling aspects of environmental consequences of the road transport by using one of the best computer based tools including the Geographic Information System (GIS). In other word, in this study, GIS and its applications is explained, models which are used to model air pollution and GHG emissions from vehicles are described and GIS is applied in real case study that attempts to forecast GHG emission from people who travel to work by car in 2031 in Melbourne for analysing results as thematic maps.Keywords: Geographic Information System (GIS), Green HouseGas(GHG) emission, sustainable development, transportation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26592617 Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications
Authors: R. Alageswaran, S. Selvakumar, P. Neelamegam
Abstract:
Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.Keywords: CSMA, DCF, MACA, TelosB
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142616 Thermodynamic Modeling of the High Temperature Shift Converter Reactor Using Minimization of Gibbs Free Energy
Authors: H. Zare Aliabadi
Abstract:
The equilibrium chemical reactions taken place in a converter reactor of the Khorasan Petrochemical Ammonia plant was studied using the minimization of Gibbs free energy method. In the minimization of the Gibbs free energy function the Davidon– Fletcher–Powell (DFP) optimization procedure using the penalty terms in the well-defined objective function was used. It should be noted that in the DFP procedure along with the corresponding penalty terms the Hessian matrices for the composition of constituents in the Converter reactor can be excluded. This, in fact, can be considered as the main advantage of the DFP optimization procedure. Also the effect of temperature and pressure on the equilibrium composition of the constituents was investigated. The results obtained in this work were compared with the data collected from the converter reactor of the Khorasan Petrochemical Ammonia plant. It was concluded that the results obtained from the method used in this work are in good agreement with the industrial data. Notably, the algorithm developed in this work, in spite of its simplicity, takes the advantage of short computation and convergence time.
Keywords: Gibbs free energy, converter reactors, Chemical equilibrium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25612615 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.
Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11652614 Simulation and Configuration of Hydrogen Assisted Renewable Energy Power System
Authors: V. Karri, W. K. Yap, J. Titchen
Abstract:
A renewable energy system discussed in this paper is a stand-alone wind-hydrogen system for a remote island in Australia. The analysis of an existing wind-diesel power system was performed. Simulation technique was used to model the power system currently employed on the island, and simulated different configurations of additional hydrogen energy system. This study aims to determine the suitable hydrogen integrated configuration to setting up the prototype system for the island, which helps to reduce the diesel consumption on the island. A set of configurations for the hydrogen system and associated parameters that consists of wind turbines, electrolysers, hydrogen internal combustion engines, and storage tanks has been purposed. The simulation analyses various configurations that perfectly balances the system to meet the demand on the island.Keywords: Hydrogen power systems, hydrogen internal combustion engine, modeling and simulation of hydrogen power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21842613 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.
Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6302612 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites
Authors: M. Aruna
Abstract:
Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. Sisal fibre has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18 and 24% by weight of sisal fibres were assessed. Sisal fibre reinforced cement composite slabs with long sisal fibres were manufactured using a cast hand lay up technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.
Keywords: Sisal fibre, fibre-reinforced concrete, mechanical behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41202611 'Drought Proofing' Australian Cities: Implications for Climate Change Adaptation and Sustainability
Authors: Phoenix Lawhon Isler, John Merson, David Roser
Abstract:
Urban water management in Australia faces increasing pressure to deal with the challenges of droughts, growing population and the climate change uncertainty. Addressing these challenges is an opportunity to incorporate the parallel goals of sustainable water management and climate change adaptation through holistic, non-technical means. This paper presents case studies from Perth and Sydney which show how despite robust adaptation plans and experience, recent efforts to 'drought proof' cities have focused on supply-side measures (i.e. desalination), rather than rethinking how water is used and managing demand. The trend towards desalination as a climate adaptation measure raises questions about the sustainability of urban water futures in Australia.
Keywords: Climate change adaptation, desalination, drought management, sustainable urban water management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22542610 Preliminary Study of Desiccant Cooling System under Algerian Climates
Abstract:
The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.Keywords: Dehumidification, efficiency, humidity, TRNSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8842609 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon
Abstract:
Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.
Keywords: Decentralized systems, microgrids, distributed generation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9822608 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature
Authors: Mohammed Abed, Rita Nemes, Salem Nehme
Abstract:
The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.
Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7092607 Design and Analysis of a Novel 8-DOF Hybrid Manipulator
Authors: H. Mohammadipanah, H. Zohoor
Abstract:
This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20022606 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems
Authors: K. Saravanan, R. Anita
Abstract:
Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.
Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19562605 Retarding Potential Analyzer Design and Result Analysis for Ion Energy Distribution Measurement of the Thruster Plume in the Laboratory
Authors: Ma Ya-li, Tang Fu-jun, Xue Yu-xiong, Chen Yi-feng, Gao Xin, Wang Yi, Tian Kai, Yan Ze-dong
Abstract:
Plasma plume will be produced and arrive at spacecraft when the electric thruster operates on orbit. It-s important to characterize the thruster plasma parameters because the plume has significant effects or hazards on spacecraft sub-systems and parts. Through the ground test data of the desired parameters, the major characteristics of the thruster plume will be achieved. Also it is very important for optimizing design of Ion thruster. Retarding Potential Analyzer (RPA) is an effective instrument for plasma ion energy per unit charge distribution measurement. Special RPA should be designed according to certain plume plasma parameters range and feature. In this paper, major principles usable for good RPA design are discussed carefully. Conform to these principles, a four-grid planar electrostatic energy analyzer RPA was designed to avoid false data, and details were discussed including construction, materials, aperture diameter and so on. At the same time, it was designed more suitable for credible and long-duration measurements in the laboratory. In the end, RPA measurement results in the laboratory were given and discussed.
Keywords: Thruster plume ion energy distributions, retarding potential analyzer, ground test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40082604 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach
Authors: Mohammad Rakibul Islam
Abstract:
Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.
Keywords: Error correcting code, RS, BCH, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32332603 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances
Authors: Sayed Amir Hamzeh Mirkheshti
Abstract:
Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.
Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8002602 Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)
Authors: J.L. Higuera Trujillo, F.J. Montero Fernández
Abstract:
Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.Keywords: Jerez de la Frontera, pre-tertiary fabrics, sustainable architecture, urban regeneration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13102601 Time and Distance Dependence of Protons Energy Loss for Laser (pw-ps) Fusion Driven Ion Acceleration
Authors: B. Malekynia
Abstract:
The anomalous generation of plasma blocks by interaction of petawatt-picosecond laser pulses permits side-on ignition of uncompressed solid fusion fuel following an improved application of the hydrodynamic Chu-model for deuterium-tritium. The new possibility of side-on laser ignition depends on accelerated ions and produced ions beams of high energy particles by the nonlinear ponderomotive force of the laser pulse in the plasma block, a re-evaluation of the early hydrodynamic analysis for ignition of inertial fusion by including inhibition factor, collective effect of stopping power of alpha particles and the energy loss rate reabsorption to plasma by the protons of plasma blocks being reduced by about a factor 40.Keywords: Block ignition, Charged particles, Reabsorption, Skin layer ponderomotive acceleration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15342600 A New Suburb Renovation Concept
Authors: A. Soikkeli, L. Sorri
Abstract:
Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects.
The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.
The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.
Keywords: Energy efficiency, Prefabrication, Renovation concept, Suburbs, Sustainability, User-Orientated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20372599 Reliability Based Optimal Design of Laterally Loaded Pile with Limited Residual Strain Energy Capacity
Authors: M. Movahedi Rad
Abstract:
In this study, a general approach to the reliability based limit analysis of laterally loaded piles is presented. In engineering practice the uncertainties play a very important role. The aim of this study is to evaluate the lateral load capacity of free-head and fixed-head long pile when plastic limit analysis is considered. In addition to the plastic limit analysis to control the plastic behaviour of the structure, uncertain bound on the complementary strain energy of the residual forces is also applied. This bound has significant effect for the load parameter. The solution to reliability-based problems is obtained by a computer program which is governed by the reliability index calculation.Keywords: Reliability, laterally loaded pile, residual strain energy, probability, limit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032598 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods
Authors: Alok Madan, Arshad K. Hashmi
Abstract:
Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.
Keywords: Masonry Infilled Frame, Energy Methods, Near-fault Ground Motions, Pushover Analysis, Nonlinear Dynamic Analysis, Seismic Demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27912597 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16302596 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel
Authors: Supriyono, Sumardiyono, Rendy J. Pramono
Abstract:
Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17022595 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation
Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze
Abstract:
Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the structural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.Keywords: Calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272594 Embedding the Dimensions of Sustainability into City Information Modelling
Authors: Ali M. Al-Shaery
Abstract:
The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.
Keywords: Information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177