
 

 
Abstract—In this study, a general approach to the reliability 

based limit analysis of laterally loaded piles is presented. In 
engineering practice the uncertainties play a very important role. The 
aim of this study is to evaluate the lateral load capacity of free-head 
and fixed-head long pile when plastic limit analysis is considered. In 
addition to the plastic limit analysis to control the plastic behaviour 
of the structure, uncertain bound on the complementary strain energy 
of the residual forces is also applied. This bound has significant effect 
for the load parameter. The solution to reliability-based problems is 
obtained by a computer program which is governed by the reliability 
index calculation. 

 
Keywords—Reliability, laterally loaded pile, residual strain 

energy, probability, limit analysis. 

I. INTRODUCTION 

N engineering practice the uncertainties play a very 
important role [1]-[3] and need intensive calculations. There 

are several engineering problem where the designer should 
face to the problem of limited load carrying capacity of the 
connected elements of the structures [4], [5]. Evaluate of the 
lateral load capacity is an important component in the analysis 
and design of pile foundations subjected to lateral loadings 
and soil movements. Elastic–plastic solutions for free head 
and fixed head single laterally loaded piles were developed 
recently by [6]-[9]. They are subsequently extended to cater 
for response of pile groups by incorporating p-multipliers. One 
of the most successful applications of the variational 
formulation in the incremental plasticity theory is the theory of 
limit analysis. The basic ideas of the principles of limit 
analysis were first recognized and applied to the steel beams 
by [10]. The fundamental problem of limit analysis is to 
determine the plastic limit load multiplier and the stresses, 
strain rates and velocities at the plastic limit state of the body. 
This can always be achieved by conducting an incremental 
analysis which is, however, usually very time-consuming. The 
main advantage of the extremum principles lies in the fact 
that, without study of the entire loading history, they directly 
provide the exact value of the upper and lower bounds of the 
plastic limit load multiplier. This is achieved merely by 
considering the sets of statically or kinematically admissible 
stress or strain rate fields of the body, [11]. At the plastic limit 
state the stresses can maintain a static equilibrium with the 
plastic limit load and, at the same time, satisfy the yield 

 
M. Movahedi Rad, Széchenyi István University, Győr, Hungary (phone: 

+36 (96) 503-400/3202; e-mail: majidmr@sze.hu).  

condition at every point in the body. Briefly, the plastic limit 
load is the largest load which can be balanced by the stresses 
satisfying the yield conditions, and the smallest load which 
can convert the body into a yield mechanism. 

At the application of the plastic analysis and design 
methods the control of the plastic behaviour of the structures 
is an important requirement. Since the limit analysis provides 
no information about the magnitude of the plastic 
deformations and residual displacements accumulated before 
the adaptation of the structure, therefore for their 
determination several bounding theorems and approximate 
methods have been proposed. Among others, [12], [13] 
suggested that the complementary strain energy of the residual 
forces could be considered an overall measure of the plastic 
performance of structures and the plastic deformations should 
be controlled by introducing a limit for magnitude of this 
energy. In engineering the problem parameters (geometrical, 
material, strength, manufacturing) are given or considered 
with uncertainties. The obtained analysis and/or design task is 
more complex and can lead to reliability analysis and design. 
Instead of variables influencing performance of the structure 
(manufacturing, strength, geometrical) only one bound 
modelling resistance scatter can be applied. The bound on the 
complementary strain energy of the residual forces controlling 
the plastic behaviour of the structure can be utilized. This 
bound has significant effect for the limit load multipliers [5], 
[13]. The aim of this study is to evaluate the lateral load 
capacity of long pile with limited residual strain energy on the 
probabilistically given conditions. If the design uncertainties 
(manufacturing, strength, geometrical) are expressed by the 
calculation of the complementary strain energy of the residual 
forces the reliability based plastic limit analysis problems can 
be formed. In this study numerical procedure is elaborated 
with a direct integration technique and the uncertainties are 
assumed to follow Gaussian distribution. The formulations of 
the problems yield to nonlinear mathematical programming. 
The optimization procedure is governed by the reliability 
index calculation. The parametric study is illustrated by the 
solution of examples. 

II. ELEMENTS OF THE MECHANICAL MODELING AND THE 

ANALYSIS 

A. Failure Mechanisms of Piles under Horizontal Forces 

Short and long piles fail under different mechanisms. A 
short rigid pile, unrestrained at the head, tends rotate or tilts as 
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shown in Fig. 1 (a) and passive resistance develops above and 
below the point of rotation on opposite sides of the pile. For 
long pile, the passive resistance is very large and pile cannot 
rotate or tilt. The lower portion remains almost vertical due to 
fixity while the upper part deflects in flexure. The pile fails 
when a plastic hinge is formed at the point of maximum 
bending moment, Fig. 1 (b). Long pile fails when the moment 
capacity is exceeded (structural failure). 

 

 

Fig. 1 Failure mechanisms of pile under horizontal load: (a) short 
rigid pile, (b) long pile 

 

 

Fig. 2 Design chart for long piles in cohesionless soil [14] 
 

 

Fig. 3 Failure mechanism (a) free-head pile (b) fixed-head pile 
 
Broms and Silberman [14] assumed simplified distribution 

of soil resistance for cohesionless soils and determined the 
load capacity of long piles in terms of the flexural rigidity of 
the pile. The design chart prepared by [14] is given Fig. 2. 

Assuming a uniform pile cross section, a plastic hinge with 
a moment of Mp will develop at the point of maximum 

bending moment that has no shear force, i.e. at point of failure 
in Fig. 3. Pile under the lateral loading has a virtual lateral 
velocity V, V0 at the pile head. The lateral velocity at any 
depth along the pile is assumed decreasing linearly from V0 to 
0 at point of failure and can be expressed as: 

 

0

z
v v (1- )

l
            (1) 

 
where z is the depth measured from pile head, l is the depth 
where plastic hinge forms. This mechanism was originally 
proposed by [15]. 

It is assumed that the lateral soil resistance is fully 
developed at the ultimate state. The ultimate soil resistance is 
described by the generic limiting force profile (LFP) proposed 
by [16] 

 
n

u r 0P A (z )              (2) 

 
where 

uP   ultimate soil resistance or limiting force per unit 

length; 1 n
r u gA s N d   (cohesive soil) and 2 n

s g
' N d  (cohesionless 

soil), gradient of the limiting force profile; d   the outer 
diameter of the pile; 

0   an equivalent depth to consider the 

resistance at the ground surface, and n( 3)    the power 

governing the shape of the limiting force profile, the values of 
n 0.7  and 1 .7 are generally sufficient accurate for piles in 
clay and sand; z  depth below the ground level; 

uS average 

undrained shear strength of cohesive soil; 
'
s effective unit 

weight of overburden soil (i.e. dry weight above water table 

and buoyant weight below); gN  gradient to correlate clay 

strength or sand weight with the ultimate resistance uP . The 

magnitude of the three input parameters 
0 g, N ,  and n  are 

independent of load levels over the entire loading regime. 
Guidelines for determining the values of the parameters are 
discussed by [16]-[18]. The generic limiting force profile 
(LFP) becomes that suggested for sand by [19], and that for 
clay by [20] and [21], by choosing an appropriate set of 

0 g, N ,  and n . For example, selecting Ng 3Kp ,
0 0  and 

n 1 , Kp   the coefficient of passive earth pressure, the 

limiting force profile becomes the Broms’ [19] LFP for sand, 
while giving 

0 g2d / N  , ,
g s uN d / s 0.5   , and n 1 , it 

reduces to Matlock’s [20] LFP for soft clay. Here the virtual 

velocity 0v  will be cancelled. The best solution, i.e. the 

largest load, is found by maximizing the load 
uH  with respect 

to the optimization parameter l . The details of calculations 
are explained by [16]. The solution for free head long piles are 
presented: 

 
1

n 1
n 1 u
0 0

r

H
(n 1) - .

A


 

     
 

l          (3) 
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The lateral load capacity can be calculated by: 
 

n 2
n 2n 1

p n 1 u 0 u
0 0

r r r

M H H1
(n 1) -

A n 2 A n 2 A




   
          

     (4) 

 
The influence of the loading eccentricity may be considered 

by replacing the plastic moment 
pM  with 

0M , where 

0 uM H e,  e  is the eccentricity. Consequently: 

 
n 2

n 2n 1
p n 1 u 0 u u

0 0
r r r r

M H H H e1
(n 1) -

A n 2 A n 2 A A




   
           

       (5) 

 
For the case of a fixed-head pile, the energy dissipation due to 

the plastic moment 
pM  at the failure points is calculated. 

Following the same derivations as for the free-head piles, the 
ultimate lateral capacity for fixed-head piles can be easily 
determined.  

B. Loadings 

The structure is subjected to a dead load 
dP  and two 

independent, static working loads 
1P  and 

2P  with multipliers

1 20, 0 m  m  (Fig. 4). In the analysis five loading cases 

(h 1, 2,...,5)  shown in Table I are taken into consideration. 

For each loading case a plastic load multiplier phm  can be 

calculated. Making use of these multipliers a limit curve can 

be constructed in the plane 1 2,m  m  (Fig. 5). Structure does 

not shake down, under the action of the loads 
1m 1P , 

2m 2P , if 

the points corresponding to the multipliers 1 2,m  m  lies inside 

or on the limit curve. 
 

 

Fig. 4 Example of free head pile 
 
At the application of the plastic analysis and design 

methods the control of the plastic behaviour of the structures 
is an important requirement. Following the suggestions of 
[12], [13] the complementary strain energy of the residual 
forces could be considered as an overall.  

 
 

TABLE I 
LOAD COMBINATIONS 

Multipliers Loads Load Multipliers 

2 0m   

1 0m   

1 20.5m m

1 2m m

1 22m m  

1 1Q P  

2 2Q = P  

3 1 1 2 2[0.5 ,  (0.5 ),  ] Q P P P P

4 1 1 2 2[ ,  ( ),  ] Q P P P P  

5 1 1 2 2[2.0 ,  (2.0 ),  ] Q P P P P  

s1m  

s2m  

s3m  

s4m   

s5m  

 

 

Fig. 5 Limit curve and safe domain 

C. Reliability-Based Control of the Plastic Deformations 

The measure of the plastic performance of structures and 
the plastic deformations should be controlled by introducing a 
bound for the magnitude of this energy: 

 

p0
1

1
W

2

n
r r
i i i

i

 Q F Q                         (6) 

 

Here 0pW  is an assumed bound for the complementary strain 

energy of the residual forces and rQ residual internal forces. 
This constraint can be expressed in terms of the residual 

moments ,
r
i aM  and 

r
i,bM acting at the ends (a and b) of the 

finite elements as: 
 

2 2
, , , , 0

1

1
( ) ( )( ) ( )

6

n
r r r ri
i a i a i b i b p

i i

l
M M M M W

E I

                  (7) 

 
By the use of (7) a limit state function can be constructed: 

 

   2 2
0 0 , , , ,

1

1
, - (( ) ( )( ) ( ) )

6

n
r r r r ri

p p i a i a i b i b
i i

l
g W M W M M M M

E I

     (8) 

 
The plastic deformations are controlled while the bound for 

the magnitude of the complementary strain energy of the 
residual forces exceeds the calculated value of the 
complementary strain energy of the residual forces. 
Introducing the basic concepts of the reliability analysis and 
using the force method the failure of the structure can be 
defined as: 

 

  R S R Sg X , X = X - X 0;                     (9) 
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where 
RX  indicates either the bound for the statically 

admissible forces SX  or a bound  for the derived quantities 

from SX . The probability of failure is given by 

 

 f gP = F 0                            (10.a) 

 
and can be calculated as  

 

 
 

R S

f

g X ,X 0

P = f X dx


                (10.b) 

 
Let assumed that due to the uncertainties the bound for the 
magnitude of the complementary strain energy of the residual 
forces is given randomly and for sake of simplicity it follows 

the Gaussian distribution with given mean value p0W  and 

standard deviation wσ . Due to the number of the probabilistic 

variables (here only single) the probability of the failure event 
can be expressed in a closed integral form: 

 

 
 

r
p0

f,calc p0 w

g W ,M 0

P = f W ,σ dx


              (10.c) 

 
By the use of the strict reliability index a reliability 

condition can be formed:  
 

target calcβ - β 0                       (10.d) 

 

where targetβ  and calcβ  are calculated as: 

 

 -1Φtarget f,targetβ = - P                   (10.e) 

 

 -1Φcalc f,calcβ = - P                     (10.f) 

 

here -1Φ : inverse cumulative distribution function (so called 
probit function) of  the Gaussian distribution. (Due to the 
simplicity of the present case the integral formulation is not 
needed, since the probability of failure can be described easily 
with the distribution function of the normal distribution of the 

stochastic bound p0W ). 

III. PLASTIC LIMIT ANALYSIS 

Determine the maximum load multiplier phm and cross-

sectional dimensions under the conditions that (i) the structure 
with given layout is strong enough to carry the loads (

d ph hmP Q ), (ii) satisfies the constraints on the limited beam-

to-column strength capacity, (iii) satisfies the constraints on 
plastic deformations and residual displacements, (iv) safe 
enough and the required amount of material does not exceed a 

given limit. The design solution method based on the static 
theorem of limit analysis [22] is formulated as below: 

 
Maximize     phm                                   (11.a) 

 
Subject to 

* p
d d G M P 0                          (11.b) 

 
* p

h ph hm G M Q 0                       (11.c) 

 
-1 -1e

d dM F GK P                           (11.d) 

 
-1 -1e

h ph hmM F GK Q                        (11.e) 

 

0 02S ( max ) 2Sp p
i y di hi i y    M M , ( 1, 2..., )i n      (11.f) 

 

( max )
p pp p
j jdj hj   M M M M , ( 1,2..., )j k         (11.g) 

 

   max maxr e e p p
i hi di hi di

         M M M M M , ( 1, 2..., )i n  (11.h) 

 

target calcβ - β 0                      (11.i) 

  

dP  is a vector of dead load. e e
h d,M M  are vectors of fictitious 

elastic moments calculated from the live and dead loads 

assuming that the structure is purely elastic. rM  is vector of 
residual internal moment and p p

d h,M M  are vectors of plastic 

moments. 
p

M is a vector of limit moment. y : yield stress, 

0S : statical moment of cross section. *F, K, G, G : flexibility, 

stiffness, geometrical and equilibrium matrices, respectively; 

hQ is a vector of load combinations, (h 1, 2,..., n).  Here 

(11.b) and (11.c) are equilibrium equations for the dead loads 
and for the live (pay) loads, respectively. Equations (11.d) and 
(11.e) express the calculations of the elastic fictitious internal 
forces (moments) from the dead loads and from the live (pay) 
loads, respectively. Equation (11.f) is the yield condition. 
Equation (11.g) is used as yield condition for lateral capacity 
of piles in term of plastic moment. Equation (11.h) is used to 
calculate the residual forces while (11.i) is the reliability 
condition which controls the plastic behaviour of the structure 
by use of the residual strain energy. By selecting the diameter 
of long pile for each load combination 

hQ  a plastic limit load 

multiplier 
phm can be determined and then the limit curve of 

the plastic limit state can be constructed. Due to the 
mathematical nature of problem (11.a)-(11.i) an iterative 
procedure was elaborated which is governed by solving (11.i). 
This is a nonlinear mathematical programming problem which 
can be solved by any appropriate solution method (e.g. NLP). 

Selecting one of the load combinations hQ  a plastic limit 

load multiplier phm  can be determined. 
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IV. NUMERICAL EXAMPLES 

To demonstrate the theories and solution strategy 
introduced above, a nonlinear mathematical programming 
procedure is elaborated where one has to determine the safe 
loading domain of a laterally loaded long pile with 
deterministic loading data and with probabilistic bound for the 
magnitude of the complementary strain energy of the residual 
forces.  

A. Example 

The application of the method is illustrated by two 
examples. The first example shows a free-head steel pile 
subjected to a lateral load and bending moment at its top with 
diameter of D  in cohesionless soil Fig. 6. The working loads 

are 1P = 10  kNH , 2P = 20  kNmM  and 0dP . The 

yield stress and the Young’s modulus are 221y kN / cm 

and 6 22 06 10   E . kN / cm .  
 

 

Fig. 6 Loads on the free-head pile 
 

The results of the solution technique are presented in Figs. 7 
and 8 where deterministic loading is considered. The results 
are in very good agreement with the expectations. In Fig. 7 
one can see the safe loading domains in function of different 
expected probability. In Fig. 8 the safe limit load domain is 
presented in case of different mean values of the 
complementary strain energy of the residual forces 

p0(W 30;  35; 40; 45)  with standard deviation 3.5 w  

and target reliability index 3.2targetβ = . One can see that 

increasing the mean values results bigger safe loading domain.  
The second example shows a fixed-head steel pile subjected 

to a lateral load and bending moment at its top with diameter 

of D  in cohesionless soil Fig. 9. The working loads are 1P =

10  kNH , 
2P = 40  kNmM and 0dP . The yield stress and 

the Young’s modulus are 221y kN / cm  and 
6 22 06 10   E . kN / cm . 

The results of the solution technique are presented in Fig. 
10 where deterministic loading is considered. In the figure one 

can see the safe loading domains in function of different 
expected probability. 

 

 

Fig. 7 Safe loading domain for plastic limit design 
 

 
Fig. 8 Safe loading domain for plastic limit design 

 

 

Fig. 9 Loads on the fixed-head pile 
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Fig. 10 Safe loading domain for plastic limit design 

V.  CONCLUSIONS 

In this paper the plastic limit analysis is described to 
calculate the lateral load capacity of long pile. To control the 
plastic behavior of the structure probabilistically given bound 
on the complementary strain energy of the residual forces is 
applied. Limit curves are presented for the plastic limit load 
multipliers. The numerical analysis shows that the given mean 
values and different expected probability on the bound of the 
complementary strain energy of the residual forces can 
influence significantly the magnitude of the plastic limit load. 
The presented investigation drowns the attention to the 
importance of the problem but further investigations are 
necessary to make more general statements. 
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