Search results for: internal combustion engine combustion emissions.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1406

Search results for: internal combustion engine combustion emissions.

536 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: Gerotor pump, high speed, simulations, aeronautic, aeration, cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
535 Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable

Authors: Tatsuya Sakoda, Yuta Nakamura, Junichiro Kitajima, Masaki Sugiura, Satoshi Kurihara, Kenji Baba, Koichiro Kaneko, Takayoshi Yarimitsu

Abstract:

An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.

Keywords: acoustic emission, creeping discharge, partial discharge, XLPE cable

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
534 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: Compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
533 Thermal Analysis of Open-Cycle Regenerator Gas-Turbine Power-Plant

Authors: M. M. Rahman, Thamir K. Ibrahim, M. Y. Taib, M. M. Noor, Rosli A. Bakar

Abstract:

Regenerative gas turbine engine cycle is presented that yields higher cycle efficiencies than simple cycle operating under the same conditions. The power output, efficiency and specific fuel consumption are simulated with respect to operating conditions. The analytical formulae about the relation to determine the thermal efficiency are derived taking into account the effected operation conditions (ambient temperature, compression ratio, regenerator effectiveness, compressor efficiency, turbine efficiency and turbine inlet temperature). Model calculations for a wide range of parameters are presented, as are comparisons with simple gas turbine cycle. The power output and thermal efficiency are found to be increasing with the regenerative effectiveness, and the compressor and turbine efficiencies. The efficiency increased with increase the compression ratio to 5, then efficiency decreased with increased compression ratio, but in simple cycle the thermal efficiency always increase with increased in compression ratio. The increased in ambient temperature caused decreased thermal efficiency, but the increased in turbine inlet temperature increase thermal efficiency.

Keywords: Gas turbine, power plant, thermal analysis, regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7247
532 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission

Authors: Changyeop Lee, Sewon Kim

Abstract:

Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Keywords: Fuel lean reburn, NOx, CO, LNG flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
531 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model

Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo

Abstract:

Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.

Keywords: ARIMA, electricity consumption, forecasting models, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
530 Developing a Web-Based Workflow Management System in Cloud Computing Platforms

Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.

Keywords: Web-based, workflow, HTML5, Cloud Computing, Queuing System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
529 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator

Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam

Abstract:

This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.

Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
528 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers

Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem

Abstract:

As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.

Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5240
527 Analytical Solutions of Three Dimensional Steady-State Heat Transfer in Rectangular Ribs

Authors: Tao Nie, Weiqiang Liu

Abstract:

In order to obtain an accurate result of the heat transfer of the rib in the internal cooling Rectangular channel, using separation of variables, analytical solutions of three dimensional steady-state heat conduction in rectangular ribs are given by solving three dimensional steady-state function of the rectangular ribs. Therefore, we can get solution of three dimensional temperature field in the rib. Based on the solution, we can get how the Bi number affected on heat transfer. Furthermore, comparisons of the analytical and numerical results indicate agreement on temperature field in the rib.

Keywords: variable separation method, analytical solution, rib, heat transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
526 Improving the Flexibility of Employment in Polish Economic Practice

Authors: A. Bodak, A. Cierniak-Emerych, M. Gableta, A. Pietroń-Pyszczek, K. Piwowar-Sulej

Abstract:

Modern organizations operate under the pressure of dynamic and often unpredictable changes, both in external and internal environment. Market success, in this context, requires a particular competence in the form of flexibility, interpreted here both on the level of individuals and on the level of organization. This paper addresses the changes taking place in the sphere of employment, as observed in economic entities operating on Polish market. Based on own empirical studies, the authors focus on the progressing trend of ‘flexibilization’ of employment, particularly in the context of transformations in organizational structure, designed to facilitate the transition into management by projects and differentiation of labor forms.

Keywords: Flexibility of employment, changes in organizational structure, forms of employment, social effects of flexibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
525 Design and Realization of an Electronic Load for a PEM Fuel Cell

Authors: Arafet Bouaicha, Hatem Allegui, Amar Rouane, El-Hassane Aglzim, Abdelkader Mami

Abstract:

In order to further understand the behavior of PEM fuel cell and optimize their performance, it is necessary to perform measurements in real time. The internal impedance measurement by electrochemical impedance spectroscopy (EIS) is of great importance. In this work, we present the impedance measurement method of a PEM fuel cell by electrochemical impedance spectroscopy method and the realization steps of electronic load for this measuring technique implementation. The theoretical results are obtained from the simulation of software PSPICE® and experimental tests are carried out using the Ballard Nexa™ PEM fuel cell system.

Keywords: Electronic load, MOS transistor, PEM fuel cell, Impedance measurement, Electrochemical Impedance Spectroscopy (EIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
524 A Study on User Authentication Method Using Haptic Actuator and Security Evaluation

Authors: YoHan Choi, HeeSuk Seo, SeungHwan Ju, SungHyu Han

Abstract:

As currently various portable devices were launched, smart business conducted using them became common. Since smart business can use company-internal resources in an exlternal remote place, user authentication that can identify authentic users is an important factor. Commonly used user authentication is a method of using user ID and Password. In the user authentication using ID and Password, the user should see and enter authentication information him or her. In this user authentication system depending on the user’s vision, there is the threat of password leaks through snooping in the process which the user enters his or her authentication information. This study designed and produced a user authentication module using an actuator to respond to the snooping threat.

Keywords: Actuator, User Authentication, Security Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
523 Calculus of Turbojet Performances for Ideal Case

Authors: S. Bennoud, S. Hocine, H. Slme

Abstract:

Developments in turbine cooling technology play an important role in increasing the thermal efficiency and the power output of recent gas turbines, in particular the turbojets.

Advanced turbojets operate at high temperatures to improve thermal efficiency and power output. These temperatures are far above the permissible metal temperatures. Therefore, there is a critical need to cool the blades in order to give theirs a maximum life period for safe operation.

The focused objective of this work is to calculate the turbojet performances, as well as the calculation of turbine blades cooling.

The developed application able the calculation of turbojet performances to different altitudes in order to find a point of optimal use making possible to maintain the turbine blades at an acceptable maximum temperature and to limit the local variations in temperatures in order to guarantee their integrity during all the lifespan of the engine.

Keywords: Brayton cycle, Turbine Blades Cooling, Turbojet Cycle, turbojet performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
522 Hole Configuration Effect on Turbine Blade Cooling

Authors: A.Hasanpour, M. Farhadi, H.R. Ashorynejad

Abstract:

In this paper a numerical technique is used to predict the metal temperature of a gas turbine vane. The Rising combustor exit temperatures in gas turbine engines necessitate active cooling for the downstream turbine section to avoid thermal failure. This study is performed the solution of external flow, internal convection, and conduction within the metal vane. Also the trade-off between the cooling performances in four different hole shapes and configurations is performed. At first one of the commonly used cooling hole geometry is investigated; cylindrical holes and then two other configurations are simulated. The average temperature magnitude in mid-plan section of each configuration is obtained and finally the lower temperature value is selected such as best arrangement.

Keywords: Forced Convection, Gas Turbine Blade, Hole Configuration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
521 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696
520 Design of Saddle Support for Horizontal Pressure Vessel

Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma

Abstract:

This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.

Keywords: ANSYS, Pressure Vessel, Saddle, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26108
519 A Case Study of Applying Virtual Prototyping in Construction

Authors: Stephen C. W. Kong

Abstract:

The use of 3D computer-aided design (CAD) models to support construction project planning has been increasing in the previous year. 3D CAD models reveal more planning ideas by visually showing the construction site environment in different stages of the construction process. Using 3D CAD models together with scheduling software to prepare construction plan can identify errors in process sequence and spatial arrangement, which is vital to the success of a construction project. A number of 4D (3D plus time) CAD tools has been developed and utilized in different construction projects due to the awareness of their importance. Virtual prototyping extends the idea of 4D CAD by integrating more features for simulating real construction process. Virtual prototyping originates from the manufacturing industry where production of products such as cars and airplanes are virtually simulated in computer before they are built in the factory. Virtual prototyping integrates 3D CAD, simulation engine, analysis tools (like structural analysis and collision detection), and knowledgebase to streamline the whole product design and production process. In this paper, we present the application of a virtual prototyping software which has been used in a few construction projects in Hong Kong to support construction project planning. Specifically, the paper presents an implementation of virtual prototyping in a residential building project in Hong Kong. The applicability, difficulties and benefits of construction virtual prototyping are examined based on this project.

Keywords: construction project planning, prefabrication, simulation, virtual prototyping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
518 The Requirements of Developing a Framework for Successful Adoption of Quality Management Systems in the Construction Industry

Authors: Mohammed Ali Ahmed, Vaughan Coffey, Bo Xia

Abstract:

Quality management systems (QMSs) in the construction industry are often implemented to ensure that sufficient effort is made by companies to achieve the required levels of quality for clients. Attainment of these quality levels can result in greater customer satisfaction, which is fundamental to ensure long-term competitiveness for construction companies. However, the construction sector is still lagging behind other industries in terms of its successful adoption of QMSs, due to the relative lack of acceptance of the benefits of these systems among industry stakeholders, as well as from other barriers related to implementing them. Thus, there is a critical need to undertake a detailed and comprehensive exploration of adoption of QMSs in the construction sector. This paper comprehensively investigates in the construction sector setting, the impacts of all the salient factors surrounding successful implementation of QMSs in building organizations, especially those of external factors. This study is part of an ongoing PhD project, which aims to develop a new framework that integrates both internal and external factors affecting QMS implementation. To achieve the paper aim and objectives, interviews will be conducted to define the external factors influencing the adoption of QMSs, and to obtain holistic critical success factors (CSFs) for implementing these systems. In the next stage of data collection, a questionnaire survey will be developed to investigate the prime barriers facing the adoption of QMSs, the CSFs for their implementation, and the external factors affecting the adoption of these systems. Following the survey, case studies will be undertaken to validate and explain in greater detail the real effects of these factors on QMSs adoption. Specifically, this paper evaluates the effects of the external factors in terms of their impact on implementation success within the selected case studies. Using findings drawn from analyzing the data obtained from these various approaches, specific recommendations for the successful implementation of QMSs will be presented, and an operational framework will be developed. Finally, through a focus group, the findings of the study and the new developed framework will be validated. Ultimately, this framework will be made available to the construction industry to facilitate the greater adoption and implementation of QMSs. In addition, deployment of the applicable recommendations suggested by the study will be shared with the construction industry to more effectively help construction companies to implement QMSs, and overcome the barriers experienced by businesses, thus promoting the achievement of higher levels of quality and customer satisfaction.

Keywords: Barriers, critical success factors, external factors, internal factors, quality management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
517 Numerical Analysis of Flow in the Gap between a Simplified Tractor-Trailer Model and Cross Vortex Trap Device

Authors: Terrance Charles, Zhiyin Yang, Yiling Lu

Abstract:

Heavy trucks are aerodynamically inefficient due to their un-streamlined body shapes, leading to more than of 60% engine power being required to overcome the aerodynamics drag at 60 m/hr. There are many aerodynamics drag reduction devices developed and this paper presents a study on a drag reduction device called Cross Vortex Trap Device (CVTD) deployed in the gap between the tractor and the trailer of a simplified tractor-trailer model. Numerical simulations have been carried out at Reynolds number 0.51×106 based on inlet flow velocity and height of the trailer using the Reynolds-Averaged Navier-Stokes (RANS) approach. Three different configurations of CVTD have been studied, ranging from single to three slabs, equally spaced on the front face of the trailer. Flow field around three different configurations of trap device have been analysed and presented. The results show that a maximum of 12.25% drag reduction can be achieved when a triple vortex trap device is used. Detailed flow field analysis along with pressure contours are presented to elucidate the drag reduction mechanisms of CVTD and why the triple vortex trap configuration produces the maximum drag reduction among the three configurations tested.

Keywords: Aerodynamic drag, cross vortex trap device, truck, RANS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
516 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry

Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter

Abstract:

Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.

Keywords: Composite, development, hybrid, innovation, system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2593
515 Impact of the Transport on the Urban Heat Island

Authors: L. Haddad, Z. Aouachria

Abstract:

The development of transport systems has negative impacts on the environment although it has beneficial effects on society. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: 1. To understand the different mechanisms of interactions between these phenomena.2. To consider appropriate technical solutions to mitigate the effects of the heat island.

Keywords: Atmospheric pollution, impact on the health, urban transport, heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992
514 Integrated Learning in Engineering Services: A Conceptual Framework

Authors: Satya Pilla

Abstract:

This study explores how the mechanics of learning paves the way to engineering innovation. Theories related to learning in the new product/service innovation are reviewed from an organizational perspective, behavioral perspective, and engineering perspective. From this, an engineering team-s external interactions for knowledge brokering and internal composition for skill balance are examined from a learning and innovation viewpoints. As a result, an integrated learning model is developed by reconciling the theoretical perspectives as well as developing propositions that emphasize the centrality of learning, and its drivers, in the engineering product/service development. The paper also provides a review and partial validation of the propositions using the results of a previously published field study in the aerospace industry.

Keywords: Engineering Services, Integrated Learning, NewProduct Development, Service Innovation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
513 The Ballistics Case Study of the Enrica Lexie Incident

Authors: Diego Abbo

Abstract:

On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen Ajesh Pink and Valentine Jelestine. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds.

Keywords: Impact physics, intermediate ballistics, terminal ballistics, tumbling effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
512 A Review of Current Trends in Thin Film Solar Cell Technologies

Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya

Abstract:

Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.

Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
511 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
510 A Quantitative Approach to Strategic Design of Component-Based Business Process Models

Authors: Eakong Atiptamvaree, Twittie Senivongse

Abstract:

A new paradigm for software design and development models software by its business process, translates the model into a process execution language, and has it run by a supporting execution engine. This process-oriented paradigm promotes modeling of software by less technical users or business analysts as well as rapid development. Since business process models may be shared by different organizations and sometimes even by different business domains, it is interesting to apply a technique used in traditional software component technology to design reusable business processes. This paper discusses an approach to apply a technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses with an aim that the process components can be reusable in different process-based software models. The approach is quantitative because the quality of process component design is measured from technical features of the process components. The approach is also strategic because the measured quality is determined against business-oriented component management goals. A software tool has been developed to measure how good a process component design is, according to the required managerial goals and comparing to other designs. We also discuss how we benefit from reusable process components.

Keywords: Business process model, process component, component management goals, measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
509 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
508 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov A. Magerramova, Mikhail A. Petrov, Vladimir V. Isakov, Liana A. Shcherbinina, Suren G. Gukasyan, Daniil V. Povalyukhin, Olga G. Klimova-Korsmik, Darya V. Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: Additive technologies, gas turbine engines, geometric optimization, weight reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97
507 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: Vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302