An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter
Abstract:
Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.
Keywords: Composite, development, hybrid, innovation, system.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1099012
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599References:
[1] JEC Composites, “Over-mouldedorgano sheets,” in JEC Composites, vol. 85, JEC Composites, 2013, pp. 22-27.
[2] K. Steinbach, G.P. Ehnert, K. Bieniek, „Neue Entwicklungen zur Erhöhung der Festigkeits- und Steifigkeitseigenschaften von SMC für belastbare Formteile,“ in Conference Proceedingsof24th AVK-Tagung, Berlin, 1991.
[3] H.G. Kia, Sheet moulding compounds - science and technology. Ohio, USA: Hanser / Gardener Publications, Inc., 1993.
[4] M. Cabrera-Rios, J.M. Castro, “An Economical Way of Using Carbon Fibers in Sheet Molding Compound Compression Molding for Automotive Applications,” in Polymer Composite, No. 27, vol. 6, 2006, pp.718-722.
[5] S. Grasser, „Composite-Metall-Hybridstrukturen unter Berücksichtigung großserientauglicher Fertigungsprozesse,“ in Conference Proceedingsof Symposium Material Innovativ, Ansbach, 2009.
[6] A. Jäschke, U. Dajek, „Dachrahmen in Hybridbauweise,“ in Sonderdruck aus VDI-Tagungsband, vol. 4260, Düsseldorf: VDI-Verlag, 2004, pp. 25-45.
[7] E. Reuther, „Kohlefaser SMC für Strukturteile,“ in 7th Internationale AVK-TV Tagung, Baden Baden, 2004, pp. A6-1 -A6-6.
[8] P. Stachel, “Carbon fibre reinforced SMC for automotive applications,” in 5th Automotive Seminar – SMC/BMC - New challenges in Automotive, Landshut, 2006.
[9] G. Spur, G. Eßer, Innovationssystem Produktionstechnik. München: Hanser, 2013.
[10] K. Ehrlenspiel, Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit. 4thed., München: Hanser, 2009.
[11] G. Pahl, W. Beitz, J. Feldhusen, K.-H. Grote, Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung – Methoden und Anwendung. 7thed., Berlin: Springer, 2007.
[12] B. Schäppi, M.M. Andreasen, M. Kirchgeorg, F.-J. Radermacher, Handbuch Produktentwicklung. München: Hanser, 2005.
[13] G. Johnson, K. Scholes, R. Whittington, Exploring Corporate Strategy. 8th ed., Harlow, England: Pearson Education Limited, 2008.
[14] W. Engeln, Methoden der Produktentwicklung: Skripten Automatisierungstechnik. 2nded., München: OldenbourgIndustrieverlag, 2011.
[15] C. Carlson, Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode And EffectsAnalysis. NewJersey, USA: John Wiley & Sons, Hoboken, 2012.