Search results for: Singular integral equation.
1444 Mechanical Quadrature Methods for Solving First Kind Boundary Integral Equations of Stationary Stokes Problem
Authors: Xin Luo, Jin Huang, Pan Cheng
Abstract:
By means of Sidi-Israeli’s quadrature rules, mechanical quadrature methods (MQMs) for solving the first kind boundary integral equations (BIEs) of steady state Stokes problem are presented. The convergence of numerical solutions by MQMs is proved based on Anselone’s collective compact and asymptotical compact theory, and the asymptotic expansions with the odd powers of the errors are provided, which implies that the accuracy of the approximations by MQMs possesses high accuracy order O (h3). Finally, the numerical examples show the efficiency of our methods.
Keywords: Stokes problem, boundary integral equation, mechanical quadrature methods, asymptotic expansions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981443 Efficient Mean Shift Clustering Using Exponential Integral Kernels
Authors: S. Sutor, R. Röhr, G. Pujolle, R. Reda
Abstract:
This paper presents a highly efficient algorithm for detecting and tracking humans and objects in video surveillance sequences. Mean shift clustering is applied on backgrounddifferenced image sequences. For efficiency, all calculations are performed on integral images. Novel corresponding exponential integral kernels are introduced to allow the application of nonuniform kernels for clustering, which dramatically increases robustness without giving up the efficiency of the integral data structures. Experimental results demonstrating the power of this approach are presented.
Keywords: Clustering, Integral Images, Kernels, Person Detection, Person Tracking, Intelligent Video Surveillance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15291442 Encryption Image via Mutual Singular Value Decomposition
Authors: Adil Al-Rammahi
Abstract:
Image or document encryption is needed through egovernment data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.
Keywords: Image cryptography, Singular values decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20861441 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble
Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani
Abstract:
Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.
Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261440 Principal Component Analysis using Singular Value Decomposition of Microarray Data
Authors: Dong Hoon Lim
Abstract:
A series of microarray experiments produces observations of differential expression for thousands of genes across multiple conditions. Principal component analysis(PCA) has been widely used in multivariate data analysis to reduce the dimensionality of the data in order to simplify subsequent analysis and allow for summarization of the data in a parsimonious manner. PCA, which can be implemented via a singular value decomposition(SVD), is useful for analysis of microarray data. For application of PCA using SVD we use the DNA microarray data for the small round blue cell tumors(SRBCT) of childhood by Khan et al.(2001). To decide the number of components which account for sufficient amount of information we draw scree plot. Biplot, a graphic display associated with PCA, reveals important features that exhibit relationship between variables and also the relationship of variables with observations.
Keywords: Principal component analysis, singular value decomposition, microarray data, SRBCT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32501439 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4
Authors: Armend Sh. Shabani
Abstract:
Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.Keywords: Pell's equation, solutions of Pell's equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12371438 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems
Authors: Dong Sang Yoo
Abstract:
We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.
Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521437 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16961436 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking
Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine
Abstract:
In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.Keywords: Color image, grayscale image, singular values decomposition, lifting wavelet transform, image watermarking, watermark, secure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10281435 Algebras over an Integral Domain and Immediate Neighbors
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.Keywords: Algebras over integral domains, Alexandroff topology, immediate neighbors, integral domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5861434 Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation
Authors: M. Zarebnia, S. Khani
Abstract:
In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.
Keywords: Hammerstein integral equations, quasi-interpolation, Nystrom’s method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44721433 Optimal Placement of Piezoelectric Actuators on Plate Structures for Active Vibration Control Using Modified Control Matrix and Singular Value Decomposition Approach
Authors: Deepak Chhabra, Gian Bhushan, Pankaj Chandna
Abstract:
The present work deals with the optimal placement of piezoelectric actuators on a thin plate using Modified Control Matrix and Singular Value Decomposition (MCSVD) approach. The problem has been formulated using the finite element method using ten piezoelectric actuators on simply supported plate to suppress first six modes. The sizes of ten actuators are combined to outline one actuator by adding the ten columns of control matrix to form a column matrix. The singular value of column control matrix is considered as the fitness function and optimal positions of the actuators are obtained by maximizing it with GA. Vibration suppression has been studied for simply supported plate with piezoelectric patches in optimal positions using Linear Quadratic regulator) scheme. It is observed that MCSVD approach has given the position of patches adjacent to each-other, symmetric to the centre axis and given greater vibration suppression than other previously published results on SVD.
Keywords: Closed loop Average dB gain, Genetic Algorithm (GA), LQR Controller, MCSVD, Optimal positions, Singular Value Decomposition (SVD) Approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30731432 Univalence of an Integral Operator Defined by Generalized Operators
Authors: Salma Faraj Ramadan, Maslina Darus
Abstract:
In this paper we define generalized differential operators from some well-known operators on the class A of analytic functions in the unit disk U = {z ∈ C : |z| < 1}. New classes containing these operators are investigated. Also univalence of integral operator is considered.
Keywords: Univalent functions, integral operators, differential operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12621431 An Algorithm for Computing the Analytic Singular Value Decomposition
Authors: Drahoslava Janovska, Vladimir Janovsky, Kunio Tanabe
Abstract:
A proof of convergence of a new continuation algorithm for computing the Analytic SVD for a large sparse parameter– dependent matrix is given. The algorithm itself was developed and numerically tested in [5].
Keywords: Analytic Singular Value Decomposition, large sparse parameter–dependent matrices, continuation algorithm of a predictorcorrector type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14561430 An Analytical Method for Solving General Riccati Equation
Authors: Y. Pala, M. O. Ertas
Abstract:
In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.
Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231429 The Pell Equation x2 − Py2 = Q
Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan
Abstract:
Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.Keywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21061428 Fixed Point Equations Related to Motion Integrals in Renormalization Hopf Algebra
Authors: Ali Shojaei-Fard
Abstract:
In this paper we consider quantum motion integrals depended on the algebraic reconstruction of BPHZ method for perturbative renormalization in two different procedures. Then based on Bogoliubov character and Baker-Campbell-Hausdorff (BCH) formula, we show that how motion integral condition on components of Birkhoff factorization of a Feynman rules character on Connes- Kreimer Hopf algebra of rooted trees can determine a family of fixed point equations.Keywords: Birkhoff Factorization, Connes-Kreimer Hopf Algebra of Rooted Trees, Integral Renormalization, Lax Pair Equation, Rota- Baxter Algebras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14421427 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation
Authors: Montri Maleewong, Sirod Sirisup
Abstract:
The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.
Keywords: Projective integration, POD method, equation-free.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13551426 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601425 A Study on the Quality of Hexapod Machine Tool's Workspace
Authors: D. Karimi, M.J. Nategh
Abstract:
One of the main concerns about parallel mechanisms is the presence of singular points within their workspaces. In singular positions the mechanism gains or loses one or several degrees of freedom. It is impossible to control the mechanism in singular positions. Therefore, these positions have to be avoided. This is a vital need especially in computer controlled machine tools designed and manufactured on the basis of parallel mechanisms. This need has to be taken into consideration when selecting design parameters. A prerequisite to this is a thorough knowledge about the effect of design parameters and constraints on singularity. In this paper, quality condition index was introduced as a criterion for evaluating singularities of different configurations of a hexapod mechanism obtainable by different design parameters. It was illustrated that this method can effectively be employed to obtain the optimum configuration of hexapod mechanism with the aim of avoiding singularity within the workspace. This method was then employed to design the hexapod table of a CNC milling machine.Keywords: Hexapod, Machine Tool, Singularity, Workspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731424 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp
Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan
Abstract:
In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.Keywords: Diophantine equation, Pell equation, quadratic form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12661423 Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral
Authors: Farid Saeidi, Serkan Dag
Abstract:
In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT).Keywords: Jk-integral, variable fiber spacing, thermoelasticity, t-stress, finite element method, fibrous composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10071422 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation
Authors: Soroosh Rezazadeh, Mehran Yazdi
Abstract:
In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631421 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition
Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami
Abstract:
As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.
Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16901420 Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.
Keywords: Multimodal biometrics, data fusion, Choquet integral, fuzzy measures, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25161419 Solution of The KdV Equation with Asymptotic Degeneracy
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).
Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16201418 Intrinsic Kinetics of Methanol Dehydration over Al2O3 Catalyst
Authors: Liang Zhang, Hai-Tao Zhang, W ei-Yong Ying, Ding-Ye Fang
Abstract:
Dehydration of methanol to dimethyl ether (DME) over a commercial Al2O3 catalyst was studied in an isothermal integral fixed bed reactor. The experiments were performed on the temperature interval 513-613 K, liquid hourly space velocity (LHSV) of 0.9-2.1h-1, pressures between 0.1 and 1.0 MPa. The effect of different operation conditions on the dehydration of methanol was investigated in a laboratory scale experiment. A new intrinsic kinetics equation based on the mechanism of Langmuir-Hinshelwood dissociation adsorption was developed for the dehydration reaction by fitting the expressions to the experimental data. An activation energy of 67.21 kJ/mol was obtained for the catalyst with the best performance. Statistic test showed that this new intrinsic kinetics equation was acceptable.Keywords: catalyst, dimethyl ether, intrinsic kinetics, methanol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46561417 Improved Robust Stability Criteria of a Class of Neutral Lur’e Systems with Interval Time-Varying Delays
Authors: Longqiao Zhou, Zixin Liu, Shu Lü
Abstract:
This paper addresses the robust stability problem of a class of delayed neutral Lur’e systems. Combined with the property of convex function and double integral Jensen inequality, a new tripe integral Lyapunov functional is constructed to derive some new stability criteria. Compared with some related results, the new criteria established in this paper are less conservative. Finally, two numerical examples are presented to illustrate the validity of the main results.
Keywords: Lur’e system, Convex function, Jensen integral inequality, Triple-integral method, Exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15171416 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30031415 On The Elliptic Divisibility Sequences over Finite Fields
Authors: Osman Bizim
Abstract:
In this work we study elliptic divisibility sequences over finite fields. MorganWard in [11, 12] gave arithmetic theory of elliptic divisibility sequences. We study elliptic divisibility sequences, equivalence of these sequences and singular elliptic divisibility sequences over finite fields Fp, p > 3 is a prime.Keywords: Elliptic divisibility sequences, equivalent sequences, singular sequences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476