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I. INTRODUCTION

Asingular value decomposition (SVD) of a real matrix

A ∈ R
m×n, m ≥ n, is a factorization A = UΣV T ,

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices and

Σ = diag(s1, . . . , sn) ∈ R
m×n. The values si, i = 1, . . . , n,

are called singular values. They may be defined to be nonneg-

ative and nonincreasing, see [4]. For computational tools and

reliable software, see [4] and [1], respectively.

Let A depend smoothly on a parameter t ∈ R, t ∈ [a, b].
The aim is to construct a path of SVD’s

A(t) = U(t)Σ(t)V (t)T , (1)

where U(t), Σ(t) and V (t) depend smoothly on t ∈ [a, b].
In [2], it is shown that real analytic matrix functions A =

A(t) ∈ R
m×n on [a, b] is the right class to expect uniqueness

of the decomposition. The notion of Analytic Singular Value

Decomposition (ASVD) is introduced for the decomposition

(1): There exists a factorization (1) that interpolates classical

SVD defined at t = a i.e.,

• the factors U(t), V (t) and Σ(t) are real analytic on [a, b],
• for each t ∈ [a, b], both U(t) ∈ R

m×m and

V (t) ∈ R
n×n are orthogonal matrices and Σ(t) =

diag(s1(t), . . . , sn(t)) ∈ R
m×n is a diagonal matrix

• at t = a, the matrices U(a), Σ(a) and V (a) are the

factors of the classical SVD of the matrix A(a).

Diagonal entries si(t) ∈ R of Σ(t) are called singular values.

Due to the requirement of smoothness, singular values may be

negative and also their ordering may by arbitrary.

II. RELATED WORK

The generic scenario is that the branches t 7−→ si(t)
of singular values, i = 1, . . . , n, may intersect at isolated

points only namely, at the points where si(t) = sj(t) or

si(t) = −sj(t) for i 6= j, see [2], p. 8. Therefore, if ASVD

Drahoslava Janovská, Institute of Chemical Technology, Prague, Czech Re-
public, email: janovskd@vscht.cz
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interpolates classical SVD with positive and different singular

values then ASVD is unique. In case that these initial singular

values are multiple then the multiplicity of singular values is

an invariant of ASVD. In other word, if there are clusters of

multiple singular values then dimension of these clusters does

not change with t. Nevertheless, even in that case one can

define ASVD uniquely, see the [2], the notion of minimum

variation path.

As far as the computation is concerned, an incremental

technique is proposed in [2]: Given a point on the path,

one computes a classical SVD for a neighboring parameter

value. Next, one computes permutation matrices which link

the classical SVD to the next point on the path. The procedure

is approximative with a local error of order O(h2), where h

is the step size.

An alternative technique for computing ASVD is presented

in [9] and [10]: A non-autonomous vector field H : R×R
N →

R
N of a huge dimension N = n+n2+m2 can be constructed

in such a way that the solution of the initial value problem

for the system x′ = H(t, x) is linked to the path of ASVD.

Moreover, [9] contributes to the analysis of non-generic points,

see [2], of the ASVD path. These points could be, in fact,

interpreted as singularities of the vector field R
N .

In [8], two methods for computing ASVD are presented and

compared. The first one modifies the technique of [2]. The

difference is in the treatment of ”clusters” of singular values.

To that end, analytic polar decomposition (APD) is introduced.

Both ASVD and APD are equivalent. Nevertheless, assuming

”clusters”, the uniqueness of APD path is achieved very

naturally (without solving an auxiliary ODE). The second

method in [8] consists in solving ODE as in [9] but it uses an

implicit integration technique. The comparison clearly prefers

the former class of methods: The ODE integration, in spite of

using an implicit scheme, lacks the precision.

A continuation algorithm for computing ASVD is presented

in [5]. It follows a path of a few selected singular values

and left/right singular vectors. It is aimed to treat large sparse

matrices. The continuation algorithm is of a predictor-corrector

type, see [3]. The relevant predictor is based on Euler method

hence on an ODE solver. In this respect, there is a link to

[9]. Nevertheless, the Newton-type corrector guarantees the

solution with a prescribed precision. It defeats the objection

of the study [8].

In this paper, we review the above mentioned continuation

algorithm and supply details namely, the proof of Theorem 1

in [5].
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III. FORMULATION OF THE PROBLEM

As a preliminary, let us recall the notion of singular value

of a matrix A ∈ R
m×n, m ≥ n:

Definition 3.1: We say that s ∈ R is a singular value of the

matrix A if there exist u ∈ R
m and v ∈ R

n such that

Av − su = 0 , AT u − sv = 0 , ‖u‖ = ‖v‖ = 1 . (2)

The vectors v and u are called the right and the left singular

vectors of the matrix A.

Note that s is defined up to its sign: if the triplet (s, u, v)
satisfies (2) then at least three more triplets

(s,−u,−v) , (−s,−u, v) , (−s, u,−v) ,

can be interpreted as singular values, left and right singular

vectors of A.

Definition 3.2: For a given s ∈ R, let us set

M(s) ≡

(

−sIm A

AT −sIn

)

,

where Im ∈ R
m×m and In ∈ R

n×n are identities.

Remark 3.1: s is a singular value of A if and only if

dimKerM(s) ≥ 1.

Lemma 3.1: Let s 6= 0, M(s)

(

u

v

)

= 0. Then uT u =

vT v.

Proof: By the definition of M(s), we assume

−su + Av = 0 , AT u − sv = 0 .

Multiplying the first equation by uT from the left and the

second equation by vT from the left, we get

uT u = −
1

s
uT Av , vT v = −

1

s
vT AT u .

Note that vT AT u = (Av)T u = uT Av. Therefore, uT u −
vT v = − 1

s
(uT Av − uT Av) = 0.

Lemma 3.2: Let s 6= 0, M(s)

(

u

v

)

= 0,

M(s)

(

ũ

ṽ

)

= 0. Then uT ũ = vT ṽ.

Proof: We assume

−su + Av = 0 , AT u − sv = 0 ,

−sũ + Aṽ = 0 , AT ũ − sṽ = 0 .

Therefore,

ũT (−su + Av) = 0 , ṽT (AT u − sv) = 0 ,

uT (−sũ + Aṽ) = 0 , vT (AT ũ − sṽ) = 0 .

Since s 6= 0,

ũT u = −
1

s
ũT Av , ṽT u = −

1

s
ṽT AT u = −

1

s
(Aṽ)T u

and

uT ũ = −
1

s
uT Aṽ , vT ṽ = −

1

s
vT AT ũ = −

1

s
(Av)T ũ .

We conclude that

ũT u − vT ṽ = −
1

s
ũT Av +

1

s
(Av)T ũ .

Since vT ṽ = ṽT v and (Av)T ũ = ũT Av,

ũT u − ṽT v = 0 .

Definition 3.3: We say that s ∈ R is a simple singular value

of a matrix A if there exist u ∈ R
m and v ∈ R

n such that

(s, u, v) , (s,−u,−v) , (−s,−u, v) , (−s, u,−v)

are the only solutions to (2). A singular value s which is not a

simple singular value is called nonsimple (multiple) singular

value.

Lemma 3.3: A triplet s 6= 0, u ∈ R
m and v ∈ R

n satisfy

(2) if and only if

AT Av = s2v , u =
1

s
Av , ‖v‖ = 1 , s 6= 0 . (3)

Proof: Let s 6= 0, u and v satisfy (2). From the first

equation in (2), Av−su = 0, we conclude that 0 = AT (Av−
su) = AT Av − sAT u = AT Av − s2v since AT u = sv.

Moreover, su = Av, i.e. u = 1
s

Av.

Let s 6= 0, u and v satisfy (3). Then AT u − sv =
AT (1

s
Av) − sv = 1

s
AT Av − sv = sv − sv = 0 and

Av − su = Av − s(1
s
Av) = Av − Av = 0. Finally,

uT u = uT (1
s
Av) = 1

s
uT Av = 1

s
(AT u)T v = 1

s
svT v = 1.

Note that a nonzero simple singular value s can be identified

with a nonzero simple eigenvalue s2 of the matrix AT A, see

Lemma 3.3.

Remark 3.2: Let s 6= 0. s is a simple singular value of A

if and only if dimKerM(s) = 1.

Lemma 3.4: s = 0 is a simple singular value of A if and

only if m = n and dimKerA = 1.

Proof: Let m = n, dimKerA = 1. As a consequence,

dimKerAT = 1. Then there exist u ∈ R
m and v ∈ R

n such

that

Av = 0 , AT u = 0 , ‖u‖ = ‖v‖ = 1 , (4)

i.e. (s = 0, u, v) satisfy (2). Clearly, (s = 0, u, v) and (s =
0,−u,−v) and (s = 0,−u, v) and (s = 0, u,−v) are the only

possibilities to solve (2).

If m > n then dimKerAT ≥ 2 and hence (4) has infinitely

many solutions. If dimKerA ≥ 2, one can also find infinitely

many solutions to (4).

Remark 3.3: Let si, sj , si 6= sj , be simple singular values

of A. Then si 6= −sj .

We will consider branches of selected singular values and

corresponding left/right singular vectors si(t), Ui(t) ∈ R
m,

Vi(t) ∈ R
n:

A(t)Vi(t) = si(t)Ui(t) , A(t)T Ui(t) = si(t)Vi(t) ,

Ui(t)
T Ui(t) = Vi(t)

T Vi(t) = 1

for t ∈ [a, b]. We will add the natural orthogonality condi-

tions Ui(t)
T Uj(t) = Vi(t)

T Vj(t) = 0, i 6= j, t ∈ [a, b].
We are interested in p, p ≤ n, selected singular values

S(t) = (s1(t), . . . , sp(t)) ∈ R
p, and in the corresponding

left/right singular vectors U(t) = [U1(t), . . . , Up(t)] ∈ R
m×p,

V (t) = [V1(t), . . . , Vp(t)] ∈ R
n×p as t ∈ [a, b].
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In the operator setting, let

F : R×R
p×R

m×p×R
n×p → R

m×p×R
n×p×R

p×p×R
p×p

(5)

be defined as

F (t, X) ≡
(

A(t)V − UΣ, AT (t)U − V Σ, UT U − I, V T V − I
)

,

(6)

where X ≡ (S, U, V ) ∈ R
p × R

m×p × R
n×p, Σ = diag(S)

and I ∈ R
p×p is the identity. Under certain assumptions, the

set of overdetermined nonlinear equations

F (t, X) = 0 (7)

implicitly defines a curve in R×R
N , where R

N , N = p(1 +
m + n), and R

p × R
m×p × R

n×p are isomorphic. The image

of F , namely R
m×p ×R

n×p ×R
p×p ×R

p×p, and R
M , M =

p(m + n + 2p), are isomorphic.

The curve (7) can be parameterized by t i.e., t 7→ X(t) =
(S(t), U(t), V (t)) so that F (t, X(t)) = 0 as t ∈ [a, b]. Given

a solution X(t) at t = a, the curve is initialized. For this

purpose, we may select p singular values and left/right singular

vectors computed via the classical SVD of the matrix A(a).
We have in mind mainly the application when m ≥ n, n is

large while p is comparatively small. We also want to exploit

sparsity of A(t) as t ∈ [a, b].
We will apply tangent continuation, see [3], Algorithm 4.25,

p. 107. It is a predictor-corrector algorithm with an adaptive

stepsize control. As far as the implementation is concerned,

the corrector is crucial. We will discuss it in next section.

IV. SOLVING DEFINING EQUATIONS

The role of our corrector is to find a root of F (t, X) = 0
for a fixed t. The dependence on the parameter t is suppressed

in this section.

A. Gauss-Newton method

The idea is to use Newton’s method to find the root. We

consider the differential DF of F at X = (S, U, V ) in

the direction δX = (δS, δU, δV ), δS ∈ R
p, δU ∈ R

m×p

and δV ∈ R
n×p. The notation reflects calculus of variations

i.e. the δ′s are the increments. The increment δS ∈ R
p

can be identified with an increment of the diagonal matrix

δΣ = diag(δS) ∈ R
p×p.

The differential DF in the direction δX = (δS, δU , δV )
is a linear operator

G : R
p×R

m×p×R
n×p → R

m×p×R
n×p×R

p×p×R
p×p (8)

The point X = (S, U, V ) is understood to be fixed and the

dependence of G on the point is not explicitly marked. Let us

describe the action of G:

δS ∈ R
p , δU ∈ R

m×p , δV ∈ R
n×p 7−→ (9)

7−→ G = (G1, G2, G3, G4) ,

where

G1(δX) ≡ AδV − δU Σ − U δΣ , (10)

G2(δX) ≡ AT δU − δV Σ − V δΣ , (11)

G3(δX) ≡ δUT U + UT δU , (12)

G4(δX) ≡ δV T V + V T δV , (13)

Σ = diag(S), δΣ = diag(δS) and A = A(t).
Let

G∗ : R
m×p × R

n×p × R
p×p × R

p×p → R
p × R

m×p × R
n×p

(14)

be the dual to G. The action of the dual is defined as

R ∈ R
m×p , Y ∈ R

n×p , W ∈ R
p×p , Z ∈ R

p×p 7−→ (15)

G∗ = (G∗

1, G
∗

2, G
∗

3) ,

where

G∗

1(R, Y, W, Z) ≡ (16)

−(
m

∑

k=1

uk1rk1 +
n

∑

k=1

vk1yk1, . . . ,

m
∑

k=1

ukprkp +
n

∑

k=1

vkpykp)
T ,

(17)

G∗

2(R, Y, W, Z) ≡ −RΣT + AY + U(WT + W ) ,(18)

G∗

3(R, Y, W, Z) ≡ −Y ΣT + AT R + V (ZT + Z) ,(19)

ukj , rkj , vkj and ykj are the relevant elements of matrices U ,

R, V and Y , and Σ = diag(S), A = A(t).
In order to simplify notation, we identify triplets (S, U, V ) ∈

R
p×R

m×p×R
n×p with vectors X ∈ R

N , N = p(1+m+n).
Therefore F , see (6), is interpreted as F : R

N → R
M , M =

p(m + n + 2p). Similarly, differential G, see (8), and its dual

G∗, see (14), are maps G : R
N → R

M and G∗ : R
M → R

N ,

respectively.

A solution (S, U, V ) to (6) can be identified with a root

X⋆ ∈ R
N of F : R

N → R
M . In order to find roots of F ,

we consider Gauss-Newton method for nonlinear least-squares

problem namely, we define

X⋆ = arg min
X∈RN

‖F (X)‖
2
2 , (20)

see [3] p 92, as a local minimizer on R
N ; ‖ ‖2 is the Euclidean

norm on R
M . The method approximates X⋆ by a sequence

{

X(j)
}∞

j=0
of X(j) ∈ R

N , which is defined by the recurrence

G(X(j))T G(X(j)) δX = −G(X(j))T F (X(j)) , (21)

X(j+1) = X(j) + δX . (22)

Solving the equation (21) for δX ∈ R
N represents a linear

least-squares problem.

We say that the root X = (S, U, V ) of F is simple provided

that the differential of F at X has full rank i.e., rank(G(X)) =
N .

Theorem 4.1: Let X = (S, U, V ), S = (s1, . . . , sp), be a

root of F . Then rank(G(X)) = N if and only if all singular

values of A are simple (i.e., si is a simple singular value of

A for each i = 1, . . . , p.)

We postpone the proof to subsection IV-B.

Corollary 4.1: If X⋆ ∈ R
N is a simple root of F then the

iterations X(j) in (21), (22) are locally convergent. The rate

of convergence is quadratic.

Proof: The result follows from [3], Theorem 4.14, p 94.

The inner loop of our algorithm consists of solving the linear

least-squares problem

G(X)T G(X) δX = −G(X)T F (X) (23)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:2, No:11, 2008 

767International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:2
, N

o:
11

, 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/7
61

7.
pd

f



for δX ∈ R
N as X ≡ X(j) ∈ R

N , see (21). Ready-

made algorithms for solving linear least-squares problems are

based on conjugate gradients, see section Normal equation

approaches in [4], in particular the algorithms CGNR on p. 545

and CGNE on p. 546.

The complication is that the matrices G(X) and G(X)T in

(23) namely the linear operators

G(X) : R
N → R

M , G∗(X) ≡ G(X)T : R
M → R

N (24)

are not available in cartesian coordinates on R
N and R

M .

They are defined by actions as linear operators (8) and (14).
Observe that in the algorithms like CGNR or CGNE one

needs to define just the action of G(X) or G(X)T on
a righthand side. In our code, we have used MATLAB-

function LSQR, see MATLAB Function Reference, which is

a modification of CGNE. One of the options is that you may

define G(X) and G(X)T by actions as linear operators in

arbitrary coordinates e.g. in the format of (8) and (14).

Note that the actions of both G = G(X) and G∗ = G∗(X)
are composed from the actions of A(t) and AT (t) on vectors

from R
n and R

m. Therefore, we may use the assumption that

A(t) and AT (t) are sparse when evaluating their actions.

B. Simplicity of the root

The aim is to prove Theorem 4.1. First, we analyze

KerG(X):
Lemma 4.1: Let X = (S, U, V ), S = (s1, . . . , sp), be a

root of F . Let G(X) δX be the differential of F at X in a

direction δX = (δS, δU, δV ). Let δUi, δVi, Ui and Vi denote

the i-th column of δU , δV , U and V as i = 1, . . . , p. Then

δX = (δS, δU, δV ) ∈ KerG(X) if and only if δS = 0 and

M(si)

(

δUi

δVi

)

= 0 , UT
i δUi = 0 , V T

i δVi = 0 (25)

M(si)

(

Ui

Vi

)

= 0 , ‖Ui‖ = ‖Vi‖ = 1 , (26)

for i = 1, . . . , p and

UT
i δUj + UT

j δUi = 0 , V T
i δVj + V T

j δVi = 0 (27)

for i, j = 1, . . . , p, i 6= j.

Proof: Let δX = (δS, δU, δV ) ∈ KerG(X). Let us

substitute Z ≡ UT δU and W ≡ V T δV . Then

Z + ZT = 0 , W + WT = 0 (28)

due to (12) and (13).

By (11), AT δU −δV Σ−V δΣ = 0. Therefore, V T AT δU −
V T δV Σ − V T V δΣ = V T AT δU − WΣ − δΣ = 0. This

equation being transposed yields δUT AV −Σ WT − δΣ = 0.

Since we assume AV = UΣ, see (6)&(7), then δUT UΣ −
Σ WT − δΣ = ZT Σ − Σ WT − δΣ = 0. We conclude that

δΣ = ΣW − ZΣ . (29)

Since Z and W are antisymmetric, see (28), diagonal entries

vanish:

Zii = 0 , Wii = 0 , i = 1, . . . , p . (30)

Therefore, the diagonal entries of δΣ vanish i.e., δS = 0 ∈ R
p.

Due to (10) and (11), we may resume that

AδV − δU Σ = 0 , AT δU − δV Σ = 0 . (31)

If we adopt suggested notation for δUi, δVi, Ui and Vi then

(25) follows from (31) and (30), and (26) from (6)&(7). The

conditions (27) follow from (12) and (13).

If δX = (δS, δU, δV ) so that δS = 0 and both δU and δV

satisfy (25)-(27) then it is easy to check that δX ∈ KerG(X).

As a preliminary to the next lemma let us note that

rank (G(X)) = N if and only if dimKer (G(X)) = 0.

Lemma 4.2: Let X = (S, U, V ), S = (s1, . . . , sp), be a

root of F . If si is a simple singular value of A for all i ∈
{1, . . . , p} then rank(G(X)) = N .

Proof: Let δX = (δS, δU, δV ), G(X)δX = 0. Let Ui,

Vi, δUi and δVi be the i-th columns of U , V , δU and δV .

Let si = Si, Si and δSi be the i-th components of S and δS.

Due to Lemma 4.1, δSi = 0 and the vectors Ui, Vi, δUi and

δVi satisfy (25) & (26).
Let si 6= 0 be a simple singular value. Referring to

Remark 3.2, dimKerM(si) = 1. In particular, KerM(si) =

span

{(

Ui

Vi

)}

, see (26). Obviously, (25) implies δUi = 0

and δVi = 0.

Let si = 0 be a simple singular value. As a consequence of

(26), Vi ∈ KerA and Ui ∈ KerAT . Following Lemma 3.4,

KerA = span {Vi} and KerAT = span {Ui}. Due to (25),

δVi ∈ KerA, V T
i δVi = 0 and δUi ∈ KerAT , UT

i δUi = 0.

Therefore, δVi = 0 and δUi = 0.

We may resume that δX = (δS, δU, δV ) = 0. It means that

dimKerG(X) = 0 and hence rank(G(X)) = N .

Lemma 4.3: Let X = (S, U, V ), S = (s1, . . . , sp), be a

root of F . Let there exists i ∈ {1, . . . , p} such that si 6= 0 is

a nonsimple singular value of A. Then dimKerG(X) ≥ 1.

In particular

1) if si 6= ±sj for all j 6= i, j = 1, . . . , p, then

dimKerG(X) ≥ 1,

2) if there exists j ∈ {1, . . . , p}, j 6= i, such that either

si = sj or si = −sj while si 6= ±sk for all k 6= i,

k 6= j, k = 1, . . . , p, then dim KerG(X) ≥ 1.

Proof: We are going to construct particular vectors δX =
(δS, δU, δV ) from KerG(X). Due to Lemma 4.1, δS = 0.

Ad case 1: Let Ui and Vi denote the i-th column of U

and V . Note that (26) is satisfied. By the assumption on

si, dim KerM(si) ≥ 2, see Remark 3.1. Therefore, except

of (Ui; Vi)
T ∈ R

m+n there exists an additional linearly

independent vector (δUi; δVi)
T ∈ R

m+n in KerM(si) i.e.,
{(

Ui

Vi

)

,

(

δUi

δVi

)}

⊂ KerM(si) .

We may assume that the eigenvectors are orthogonal i.e.,

UT
i δUi + V T

i δVi = 0. We may also assume that ‖δUi‖ = 1,

‖δVi‖ = 1 and UT
i δUi = V T

i δVi, see Lemma 3.1, Lemma

3.2. Therefore, UT
i δUi = 0 and V T

i δVi = 0.

Consider the matrices δU ∈ R
m×p and δV ∈ R

n×p of the

form

δU ≡ [0, . . . , 0, δUi, 0, . . . , 0] , δV ≡ [0, . . . , 0, δVi, 0, . . . , 0]
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that consist of zero columns except of the i-th column with the

prescribed entries. The claim is that δX ≡ (δS = 0, δU, δV )
belongs to KerG(X):

Due to Lemma 4.1, we have to verify (25), (26), (27).
The conditions (25) and (26) follow from definition of δU ,

δV . Hence it remains to check (27) namely that UT
j δUi =

0 , V T
j δVi = 0 , j 6= i.

Recall that

AVj = sjUj , AT Uj = sjVj , V T
j Vj = 1 , j 6= i , (32)

AδVi = siδUi , AT δUi = siδVi , δV T
i δVi = 1 , j 6= i .

(33)

Then multiplying (33) by UT
j and V T

j , and (32) by δUT
j and

δV T
j yields

UT
j AδVi = siU

T
j δUi , V T

j AT δUi = siV
T
j δVi

δUT
i AVj = sjδU

T
i Uj , δV T

i AT Uj = sjδV
T
i Vj

Therefore

siU
T
j δUi = sjV

T
j δVi , sjU

T
j δUi = siV

T
j δVi

i.e.,
(

si −sj

−sj si

) (

UT
j δUi

V T
j δVi

)

=

(

0
0

)

, det(s2
i−s2

j) 6= 0

(34)

Hence UT
j δUi = 0 , V T

j δVi = 0 , j 6= i.

Ad case 2: Let Ui and Vi denote the i-th column of U and

V . Let Uj and Vj denote the j-th column of U and V . Assume

i < j without loss of generality.

Consider the matrices δU ∈ R
m×p and δV ∈ R

n×p of the

form

δU ≡ [0, . . . , 0, a, 0, . . . , 0, b, 0, . . .0] ,

δV ≡ [0, . . . , 0, c, 0, . . . , 0, d, 0, . . . 0]

which consist of zero columns except of the i-th column which

is equal to a ∈ R
m and c ∈ R

n, and the j-th column which

is equal to b ∈ R
m and d ∈ R

n.

Let si = −sj . Given real α and β, let δX ≡ (δS =
0, δU, δV ) for the setting a = αUj , b = βUi, c = −αVj ,

d = −βVi. Let us apply Lemma 4.1 in order to check that

δX ∈ KerG(X): Verifying (25)-(27) choose, say, k and l as

the current indices since i and j are fixed already.

Obviously, (25)&(26) are satisfied. Let us check (27).

In order to verify (27) for the fixed i and arbitrary k, k 6= i,

k 6= j, i.e., the claim that UT
k δUi = 0, V T

k δVi = 0, we use

the same argument as on lines (32)–(34).
It remains to verify (27) for the selected indices i and j. In

that case the condition reads

UT
j δUi + UT

i δUj ≡ αUT
j Uj + βUT

i Ui = 0

V T
j δVi + V T

i δVj ≡ −αV T
j Vj − βV T

i Vi = 0 .

Setting α = 1 and β = −1 the remaining condition is satisfied

and hence we constructed a nontrivial δX ∈ KerG(X).
If si = sj , the argument is similar.

Lemma 4.4: Let X = (S, U, V ), S = (s1, . . . , sp), be a

root of F . Let there exists i ∈ {1, . . . , p} such that si = 0 is

a nonsimple singular value of A. Then dimKerG(X) ≥ 1.

In particular

1) if sj 6= 0 for all j 6= i, j = 1, . . . , p, and m = n then

dimKerG(X) ≥ 2,

2) if sj 6= 0 for all j 6= i, j = 1, . . . , p, and m > n then

dimKerG(X) ≥ m − n,

3) if there exists j ∈ {1, . . . , p}, j 6= i, such that sj = 0
while sk 6= 0 for all k 6= i, k 6= j, k = 1, . . . , p, then

dimKerG(X) ≥ 1.

Proof: We construct particular vectors δX =
(δS, δU, δV ) from KerG(X). Due to Lemma 4.1, δS = 0.

Let Ui and Vi denote the i-th column of U and V .

Assume sj 6= 0 for all j 6= i, j = 1, . . . , p, see case 1 and 2.

From Lemma 3.4 it follows that either m = n, dim KerA ≥ 2
or m > n, dim KerA ≥ 1. This characterizes case 1 and case

2.

Ad case 1: There exists δVi ∈ KerA such that ‖δVi‖ = 1
and V T

i δVi = 0. Moreover, there exists δUi ∈ KerAT such

that ‖δUi‖ = 1 and UT
i δUi = 0.

Consider the matrices δU ∈ R
m×p and δV ∈ R

n×p of the

form

δU ≡ [0, . . . , 0, a, 0, . . . , 0] , δV ≡ [0, . . . , 0, b, 0, . . . , 0]

which consist of zero columns except of the i-th column with

the prescribed entries from a ∈ R
n and b ∈ R

n.

The claim is that δX1 ≡ (δS = 0, δU, δV ) for the setting

a = δUi, b = 0 and δX2 ≡ (δS = 0, δU, δV ) for the setting

a = 0, b = δVi belong to KerG(X). Obviously, δX1 and δX2

are linearly independent. The proof of the claim follows from

Lemma 4.1 namely, we have to verify (25), (26) and (27) for

the appropriate δX ≡ δX1 and δX ≡ δX2.

The conditions (25)&(26) are satisfied due to definition

of δU and δV . It remains to check (27): Recall (32). Then

multiplying (32) by δUT
i and δV T

i yield

δUT
i AVj = sjδU

T
i Uj , δV T

i AT Uj = sjδV
T
i Vj , j 6= i .

By definition of δUi and δVi, δUT
i AVj = 0 and δV T

i AT Uj =
0. Since sj 6= 0 for j 6= i then δUT

i Uj = 0 and δV T
i Vj = 0,

which verifies (27).

Ad case 2: If k = dimKerA then k ≥ 1 and dimKerAT =
m − n + k ≥ m − n + 1 ≥ 2. Therefore, there exists

δUi ∈ R
m such that ‖δUi‖ = 1 and UT

i δUi = 0. Let

δU ≡ [0, . . . , 0, δUi, 0, . . . , 0] ∈ R
m×p be composed from

zero columns except of the i-th column with the prescribed

entries. Let δV ∈ R
n×p be the zero matrix. The claim is

that δX ≡ (δS = 0, δU, δV ) belongs to KerG(X). The

proof of the claim follows from Lemma 4.1. It proves that

dimKerG(X) ≥ 1. From the construction of δUi, it is

clear that δUi is chosen from (m − n)-dimensional space of

candidates. Therefore, dimKerG(X) ≥ m − n.

Ad case 3: Assume i < j without loss of generality.

Consider the matrices δU ∈ R
m×p and δV ∈ R

n×p of the

form

δU ≡ [0, . . . , 0, a, 0, . . . , 0, b, 0, . . .0] ,

δV ≡ [0, . . . , 0, c, 0, . . . , 0, d, 0, . . .0]
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which consist of zero columns except of the i-th column which

is equal to a ∈ R
m and c ∈ R

n, and the j-th column which

is equal to b ∈ R
m and d ∈ R

n.

The claim is that δX ≡ (δS = 0, δU, δV ) for the setting

a = Uj , b = −Ui, c = Vj , d = −Vi belongs to KerG(X).
The proof of the claim follows from Lemma 4.1 namely,

we have to verify (25), (26) and (27) for the appropriate δX .

The argument is similar to the proof of Lemma 4.3, Ad case

2.

Proof: of Theorem 4.1
• Due to Lemma 4.2, the simplicity of all singular values

yield full rank of G(X)
• Lemma 4.3 and 4.4 imply that the simplicity of all

singular values is the necessary condition for G(X) to

have full rank.

V. CONTINUATION ALGORITHM

We will briefly sketch the implementation of tangent con-

tinuation, see [3], Algorithm 4.25, p. 107. Let (t, X) satisfy

(6)&(7).

Predictor step: Find δX ∈ R
p × R

m×p × R
n×p such that

FX(t, X) δX = −Ft(t, X) , (35)

where FX and Ft are partial differentials of F with respect

to state X and time t at the point (t, X). In the notation of

Section IV, FX(t, X) = G(X) and the action of FX(t, X) on

δX is defined via (9). Let us note that

Ft(t, X) =
(

A′(t)V , (AT (t))′ U , 0 ∈ R
p×p , 0 ∈ R

p×p
)

X = (S, U, V ).

This particular δX can be interpreted as the tangent to the

curve implicitly defined by (6)&(7) at (t, X). We will consider

δX to be least-squares solution to (35),

G(X)T G(X) δX = −G(X)T Ft(t, X) , G(X) ≡ FX(t, X) ,

(36)

compare with (23). Let us assume that X = (S, U, V ), S =
(s1, . . . , sp), si be simple singular values of A(t) for each

i = 1, . . . , p. Due to Theorem 4.1, the solution δX to (35)

and to (36) are the same.

Given a small time increment δt > 0, we set

X0 = X + δt δX , t := t + δt (37)

to be the predictor.

Corrector step: Generate the sequence
{

X(j)
}∞

i=0
of X(j) ∈

R
N , see (21)&(22), up to the required convergence. In

(21)&(22), it is understood that F (X(j)) ≡ F (t, X(j)),
G(X(j)) ≡ FX(t, X(j)) for just updated t in (37).
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