Search results for: Cost optimization modelling
4097 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.
Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16064096 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Authors: Hassan Hajabdollahi
Abstract:
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.
Keywords: Shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11194095 Flow Modeling and Runner Design Optimization in Turgo Water Turbines
Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis
Abstract:
The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40574094 P-ACO Approach to Assignment Problem in FMSs
Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh
Abstract:
One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.
Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19074093 Building Gabor Filters from Retinal Responses
Authors: Johannes Partzsch, Christian Mayr, Rene Schuffny
Abstract:
Starting from a biologically inspired framework, Gabor filters were built up from retinal filters via LMSE algorithms. Asubset of retinal filter kernels was chosen to form a particular Gabor filter by using a weighted sum. One-dimensional optimization approaches were shown to be inappropriate for the problem. All model parameters were fixed with biological or image processing constraints. Detailed analysis of the optimization procedure led to the introduction of a minimization constraint. Finally, quantization of weighting factors was investigated. This resulted in an optimized cascaded structure of a Gabor filter bank implementation with lower computational cost.
Keywords: Gabor filter, image processing, optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23984092 Particle Swarm Optimization with Reduction for Global Optimization Problems
Authors: Michiharu Maeda, Shinya Tsuda
Abstract:
This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16224091 Optimal Synthesis of Multipass Heat Exchanger without Resorting to Correction Factor
Authors: Bharat B. Gulyani, Anuj Jain, Shalendra Kumar
Abstract:
Customarily, the LMTD correction factor, FT, is used to screen alternative designs for a heat exchanger. Designs with unacceptably low FT values are discarded. In this paper, authors have proposed a more fundamental criterion, based on feasibility of a multipass exchanger as the only criteria, followed by economic optimization. This criterion, coupled with asymptotic energy targets, provide the complete optimization space in a heat exchanger network (HEN), where cost-optimization of HEN can be performed with only Heat Recovery Approach temperature (HRAT) and number-of-shells as variables.Keywords: heat exchanger, heat exchanger networks, LMTD correction factor, shell targeting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43244090 Simulated Annealing Application for Structural Optimization
Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh
Abstract:
Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19564089 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.
Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21164088 Optimization Technique in Scheduling Duck Tours
Authors: Norhazwani M. Y., Khoo, C. F., Hasrul Nisham R.
Abstract:
Tourism industries are rapidly increased for the last few years especially in Malaysia. In order to attract more tourists, Malaysian Governance encourages any effort to increase Malaysian tourism industry. One of the efforts in attracting more tourists in Malacca, Malaysia is a duck tour. Duck tour is an amphibious sightseeing tour that works in two types of engines, hence, it required a huge cost to operate and maintain the vehicle. To other country, it is not so new but in Malaysia, it is just introduced, thus it does not have any systematic routing yet. Therefore, this paper proposed an optimization technique to formulate and schedule this tour to minimize the operating costs by considering it into Travelling Salesman Problem (TSP). The problem is then can be solved by one of the optimization technique especially meta-heuristics approach such as Tabu Search (TS) and Reactive Tabu Search (RTS).Keywords: Optimization, Reactive Tabu Search, Tabu Search, Travelling Salesman Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17014087 Seat Assignment Model for Student Admissions Process at Saudi Higher Education Institutions
Authors: Mohammed Salem Alzahrani
Abstract:
In this paper, student admission process is studied to optimize the assignment of vacant seats with three main objectives. Utilizing all vacant seats, satisfying all programs of study admission requirements and maintaining fairness among all candidates are the three main objectives of the optimization model. Seat Assignment Method (SAM) is used to build the model and solve the optimization problem with help of Northwest Coroner Method and Least Cost Method. A closed formula is derived for applying the priority of assigning seat to candidate based on SAM.
Keywords: Admission Process Model, Assignment Problem, Hungarian Method, Least Cost Method, Northwest Corner Method, Seat Assignment Method (SAM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19774086 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach
Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian
Abstract:
The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.Keywords: Aggregate Production Planning, Costs, and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25864085 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization
Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han
Abstract:
This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28004084 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.
Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14174083 Solution of Interval-valued Manufacturing Inventory Models With Shortages
Authors: Susovan Chakrabortty, Madhumangal Pal, Prasun Kumar Nayak
Abstract:
A manufacturing inventory model with shortages with carrying cost, shortage cost, setup cost and demand quantity as imprecise numbers, instead of real numbers, namely interval number is considered here. First, a brief survey of the existing works on comparing and ranking any two interval numbers on the real line is presented. A common algorithm for the optimum production quantity (Economic lot-size) per cycle of a single product (so as to minimize the total average cost) is developed which works well on interval number optimization under consideration. Finally, the designed algorithm is illustrated with numerical example.Keywords: EOQ, Inventory, Interval Number, Demand, Production, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16474082 Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach
Authors: S. S. Mishra, D. K. Yadav
Abstract:
This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. In this paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.Keywords: Cost and Profit, Computing, Expected Revenue, Priority classes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27164081 A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs
Authors: Hossein Nourkhiz Mahjoub, Mohsen Shiva
Abstract:
Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.Keywords: Mixed-Integer Non Linear Programming (MINLP), routing and scheduling, throughput, wireless mesh networks (WMNs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13734080 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization
Authors: Abhijit Mitra, Harpreet Singh Dhillon
Abstract:
We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.
Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20574079 Construction Unit Rate Factor Modelling Using Neural Networks
Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula
Abstract:
Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility and overhead & profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.
Keywords: Construction cost factors, neural networks, roadworks, Zambian Construction Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38254078 Software Test Data Generation using Ant Colony Optimization
Authors: Huaizhong Li, C.Peng Lam
Abstract:
State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.
Keywords: Software testing, ant colony optimization, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34594077 Predictive Modelling Techniques in Sediment Yield and Hydrological Modelling
Authors: Adesoji T. Jaiyeola, Josiah Adeyemo
Abstract:
This paper presents an extensive review of literature relevant to the modelling techniques adopted in sediment yield and hydrological modelling. Several studies relating to sediment yield are discussed. Many research areas of sedimentation in rivers, runoff and reservoirs are presented. Different types of hydrological models, different methods employed in selecting appropriate models for different case studies are analysed. Applications of evolutionary algorithms and artificial intelligence techniques are discussed and compared especially in water resources management and modelling. This review concentrates on Genetic Programming (GP) and fully discusses its theories and applications. The successful applications of GP as a soft computing technique were reviewed in sediment modelling. Some fundamental issues such as benchmark, generalization ability, bloat, over-fitting and other open issues relating to the working principles of GP are highlighted. This paper concludes with the identification of some research gaps in hydrological modelling and sediment yield.Keywords: Artificial intelligence, evolutionary algorithm, genetic programming, sediment yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18614076 Temperature Profile Modelling in Flexible Pavement Design
Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho
Abstract:
The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.
Keywords: Temperature profile, flexible pavement modelling, finite element method, temperature modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5294075 Determining Optimal Demand Rate and Production Decisions: A Geometric Programming Approach
Authors: Farnaz G. Nezami, Mir B. Aryanezhad, Seyed J. Sadjadi
Abstract:
In this paper a nonlinear model is presented to demonstrate the relation between production and marketing departments. By introducing some functions such as pricing cost and market share loss functions it will be tried to show some aspects of market modelling which has not been regarded before. The proposed model will be a constrained signomial geometric programming model. For model solving, after variables- modifications an iterative technique based on the concept of geometric mean will be introduced to solve the resulting non-standard posynomial model which can be applied to a wide variety of models in non-standard posynomial geometric programming form. At the end a numerical analysis will be presented to accredit the validity of the mentioned model.Keywords: Geometric programming, marketing, nonlinear optimization, production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14354074 Wafer Fab Operational Cost Monitoring and Controlling with Cost per Equivalent Wafer Out
Authors: Ian Kree, Davina Chin Lee Yien
Abstract:
This paper presents Cost per Equivalent Wafer Out, which we find useful in wafer fab operational cost monitoring and controlling. It removes the loading and product mix effect in the cost variance analysis. The operation heads, therefore, could immediately focus on identifying areas for cost improvement. Without this, they would have to measure the impact of the loading variance and product mix variance between actual and budgeted prior to make any decision on cost improvement. Cost per Equivalent Wafer Out, thereby, increases efficiency in wafer fab operational cost monitoring and controlling.
Keywords: Cost Control, Cost Variance, Operational Expenditure, Semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24124073 Impact of Wind Energy on Cost and Balancing Reserves
Authors: A. Khanal, A. Osareh, G. Lebby
Abstract:
Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost, as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study is show how the increases in wind generation will affect power system economics.
Keywords: Balancing Reserves, Optimization, Wind Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26464072 Non-Stationary Stochastic Optimization of an Oscillating Water Column
Authors: María L. Jalón, Feargal Brennan
Abstract:
A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13794071 Pallet Tracking and Cost Optimization of the Flow of Goods in Logistics Operations by Serial Shipping Container Code
Authors: Dominika Crnjac Milic, Martina Martinovic, Vladimir Simovic
Abstract:
The case study method in this paper shows the implementation of Information Technology (IT) and the Serial Shipping Container Code (SSCC) in a Croatian company that deals with logistics operations and provides logistics services in the cold chain segment. This company is aware of the sensitivity of the goods entrusted to them by the user of the service, as well as of the importance of speed and accuracy in providing logistics services. To that end, it has implemented and used the latest IT to ensure the highest standard of high-quality logistics services to its customers. Looking for efficiency and optimization of supply chain management, while maintaining a high level of quality of the products that are sold, today's users of outsourced logistics services are open to the implementation of new IT products that ultimately deliver savings. By analysing the positive results and the difficulties that arise when using this technology, we aim to provide an insight into the potential of this approach of the logistics service provider.
Keywords: Logistics operations, serial shipping container code, SSCC, information technology, cost optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9394070 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life-cycle cost of an electric motor.
Keywords: Initial Cost, Life-cycle cost, Maintenance Cost, Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22164069 Contribution to the Query Optimization in the Object-Oriented Databases
Authors: Minyar Sassi, Amel Grissa-Touzi
Abstract:
Appeared toward 1986, the object-oriented databases management systems had not known successes knew five years after their birth. One of the major difficulties is the query optimization. We propose in this paper a new approach that permits to enrich techniques of query optimization existing in the object-oriented databases. Seen success that knew the query optimization in the relational model, our approach inspires itself of these optimization techniques and enriched it so that they can support the new concepts introduced by the object databases.Keywords: Query, query optimization, relational databases, object-oriented databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15484068 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications
Authors: Waleed Abohamad, Amr Arisha
Abstract:
Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910