
 

 

 
Abstract—This paper presents an extensive review of literature 

relevant to the modelling techniques adopted in sediment yield and 
hydrological modelling. Several studies relating to sediment yield are 
discussed. Many research areas of sedimentation in rivers, runoff and 
reservoirs are presented. Different types of hydrological models, 
different methods employed in selecting appropriate models for 
different case studies are analysed. Applications of evolutionary 
algorithms and artificial intelligence techniques are discussed and 
compared especially in water resources management and modelling. 
This review concentrates on Genetic Programming (GP) and fully 
discusses its theories and applications. The successful applications of 
GP as a soft computing technique were reviewed in sediment 
modelling. Some fundamental issues such as benchmark, 
generalization ability, bloat, over-fitting and other open issues 
relating to the working principles of GP are highlighted. This paper 
concludes with the identification of some research gaps in 
hydrological modelling and sediment yield. 

 
Keywords—Artificial intelligence, evolutionary algorithm, 

genetic programming, sediment yield. 

I. INTRODUCTION 

EDIMENT yield can be considered to be the total 
sediment load that leaves a drainage basin. It could also be 

defined as the quantity of sediment per unit area removed 
from a watershed by flowing water during a specific period of 
time [1]. Sediment yield can be divided into three categories 
namely: (1) suspended sediment – these are the particles 
suspended due to turbulence in the upper portion of a river just 
below the water surface. They comprise of silt, clay, and sand 
size; (2) bed load – these are larger particles that move along 
the bottom of a river. These particles are large sand, gravel, 
rock and boulders; (3) saltation – these are particles that 
bounce up and down the top and bottom of a river. They are 
mostly sand size or gravel [2]. Fig. 1 shows an illustration of 
the various categories of particles found in a river. 
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Fig. 1 Layers and movement of particles in a river [2] 
 
The effect of rainfall splash detachment and entrainment 

through overland flow also generates sediments. Detachment 
takes place when locally induced shear stress exceeds the 
cohesive strength of the soil [3]. Geomorphic characteristics 
like vegetation cover, land use, precipitation, sediment 
storage, drainage density, topography, soil erodibility and 
sediment transport capacity affects the sediment yield of a 
river basin [2]. This is increased through soil disturbance 
during land use, unstable geological terrain and/or a high 
rainfall zone. All rivers contain sediments and when a river is 
stilled behind a dam, some of the sediments sink to the bottom 
of the dam. As sediments accumulate, the reservoir gradually 
loses its ability to store water for the purposes for which it was 
built. Every reservoir loses storage to sedimentation, although 
the rate at which this happens varies widely. Sedimentation is 
a major technical problem faced by marine industries. Apart 
from rapidly filling reservoirs, sediment-filled rivers also 
cause abrasion to turbines and other reservoir components [4]. 
The knowledge of the quantity of sediment present in a river at 
a particular time can lead to a better understanding of flood 
capacity in reservoirs and consequently help control over-bane 
flooding. The reduction of sediments in a reservoir also has 
the following advantages: (1) it improves water quality; (2) it 
makes the water more suitable for man and aquatic life and; 
(3) it allows the design storage to be maintained and it allows 
for better navigation [4]. The development of hydrological 
models to forecast the quantity of sediment that will be present 
in a river at a given time helps planners and managers of water 
resource systems to understand the system better in terms of 
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its problems and to find alternative ways to address them [5]. 
According to  [6], many models are used for simulating and 
estimating sediment yield transport but they differ in the 
processes involved, the complexity and data required for 
calibration and usage. Furthermore, it was stated that the most 
appropriate model depends on the intended use and the 
features of the catchment in consideration. The following 
factors also affect the choice of a model: (1) the intended 
model capabilities and features; (2) the simplicity of the model 
and output scales and; (3) the assumptions made in using the 
model; (4) validity and accuracy of the model and (5) the data 
required by the model [6]. 

II. TYPES OF HYDROLOGICAL MODELS 

Hydrological models can be categorized into three groups 
namely: empirical or statistical models, conceptual models and 
physic - based models. 

A. Empirical or Statistical Models 

Empirical models are based on the analysis of observations 
and the characterization of responses from the observed data 
[7]. These models require fewer amounts of data and lower 
computational requirements when compared to other types of 
models. They have a high level of spatial and temporal 
aggregation and also incorporate a small number of causal 
variables [8]. The parameter values are obtained from the 
calibration of experimental sites and are very effective in the 
identification of sediment sources and nutrient generation [6]. 
These models are criticized for using unrealistic assumptions 
concerning the physics of the catchment while ignoring the 
catchment heterogeneity inputs and characteristics such as soil 
types and rainfall [7]. They also do not respond to events 
thereby neglecting the impact of rainfall - runoff on the 
catchment being modelled [4]. Despite these shortcomings, the 
more complex and dynamic models in this regard cannot be 
considered as better when compared to other model groups. 
Empirical models can also be used as a first step when 
identifying sources of sediment and nutrient generation [6]. 
Fournier, Dendy and Bolton, and Revised Universal Soil Loss 
Equation (RUSLE) [9], [10] are examples of empirical 
models. 

B. Conceptual Models 

Conceptual models view flow path in catchment as a series 
of internal storages. They generally consider the description of 
catchment processes but neglect the specific interaction 
between the processes [11]. Therefore, both qualitative and 
quantitative effects of land use changes are indicated in these 
models. Parameter values in conceptual models are 
determined by the calibration against observed data, leading to 
problems associated with its identification [12], [13]. Spear 
[14], observed that as a result of the calibration techniques 
used for medium complexity models, many possible ‘best’ 
parameter sets can be made available. Thus calibration and 
identification of additional parameters using a priori 
knowledge of the system can limit the number of parameters 
to be estimated [15]. According to  [16] conceptual models 

can be used as an intermediary model between empirical 
models and physics-based models. They also reflect the 
principles that govern the system to be modelled. Examples of 
such models include Agricultural Nonpoint Source Pollution 
(AGNPS) and Morgan-Morgan-Finney (MMF). 

C. Physics-Based Models 

These are based on the use of basic physical equations 
which are solutions that describe discharge and sediment 
generation. Standard equations such as the equation of 
conservation of mass for sediment and the equations of 
conservation of mass and momentum for flow are used in 
physics-based models [17]. In theory, its parameters are 
measurable but conversely, this is not obtainable in practice 
due to their large numbers, hence they are calibrated against 
observed data [18]. The calibration of the model’s parameter 
values when there are occurrences of missing values usually 
result in uncertainty in the model outcome. Furthermore, 
uncertainty can also occur when the parameter values cannot 
be measured. This is due to the likelihood of the occurrence of 
error during measurements [19]. Examples of widely-used 
physics-based models include Gridded Surface Subsurface 
Hydrologic Analysis (GSSHA) [20], [21], Hydrologic 
Simulation Program Fortran (HSPF) [22], Kinematic Runoff 
and Erosion Model (KINEROS2) [23], MIKE SHE [24] and 
Soil and Water Assessment Tool (SWAT) [25]. 

D. Selecting an Appropriate Model  

The choice of a model depends mainly on its purpose, so a 
model may not necessarily be used for all modelling 
situations. From the literature [26]-[28], the choice of a model 
largely depends on where the emphasis will be laid, that is, 
either on the processes of the work or on the expected output 
that addresses the problem. For instance, in a study carried out 
by [28] both empirical and conceptual models were used to 
predict nitrate concentrations in groundwater aquifers in a 
catchment. The models’ forecasting abilities were considered 
because of the semi-empirical nature of the process. Letcher et 
al. [26], in their technical report, argued that the combination 
of simple empirical and conceptual models can function more 
effectively when used within a developed framework. Also, 
[27] examined the relationship between the number of 
optimized parameters and model performance in 429 
catchments. It was stated that over-parameterization of 
rainfall-runoff models can greatly affect the ability of the 
model to forecast stream flow [4]. 

III. SOFT COMPUTING AND ENGINEERING DESIGN 

The desire to better understand life on earth has been in 
existence from the very beginning and this has been inspired 
by the efforts made by man to find ways to produce life-
oriented behaviours [29]. The field of artificial intelligence 
has, year on year, produced a series of new methodologies 
incorporating the use of biologically-inspired computation 
methods to solve problems. These ‘bio-inspired’ models are 
related to and include the study of probabilistic reasoning, 
machine learning, emergence of novelty, complex adaptive 
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systems, social behaviour, intelligence, sustainability and 
survival [30]. The past two decades have witnessed great 
improvement in the application of artificial intelligence 
techniques to solve problems where conventional approaches 
have failed or performed poorly [31]. A data-driven approach 
which utilizes soft computing or Artificial Intelligence (AI), 
namely, Artificial Neural Network (ANN), Fuzzy Logic (FL), 
and Genetic Algorithms (GA) has been used by researchers to 
address some of these issues [32]-[34]. AIs have been used 
successfully over the years in hydrology and water resources 
applications like sediment yield estimation models [35], 
rainfall-runoff modelling [36] and water quality prediction 
models [37]. In this study, emphasis is laid on past and recent 
applications of genetic programming (GP), a family of 
evolutionary algorithms (EAs) which adopts a biologically-
inspired computation model to solve problems. 

IV. ARTIFICIAL INTELLIGENCE IN HYDROLOGICAL STUDIES 

Water is one of the most important natural resource. Even 
though its importance to our existence on earth cannot be over 
emphasized, it is also an important raw material for many 
industries [16]. Though this resource is abundant and almost 
70% of the Earth's surface is covered with water, the amount 
of freshwater that can be effectively utilized is very limited 
[38]. There is an acute water shortage and people often have to 
face hardships in getting access to potable water due to 
depleting water tables, drying up of wells and rivers, and 
irregular rainfall. Due to these shortages, large swathes of land 
are being rendered barren. The excess water in the form of 
floods, which cause changes to river courses and rising sea 
levels, have resulted in large scale destruction of life and 
property [39]. The scarcity of water also has political 
implications in many countries around the globe. While some 
do not favour equitable sharing of river water, others oppose 
the construction of dams and the diversion of river waters. 

From the foregoing, it is clear that proper management of 
this precious natural resource is very important for the survival 
of mankind and other forms of life [40]. This calls for research 
in finding and implementing new methods and techniques for 
the proper management of limited water resources to ensure a 
reliable supply of water for fulfilling the needs of the society 
[4]. Such new methods and techniques can be readily 
implemented if a good foundation for understanding water 
resources and the consumption patterns is laid. It is necessary 
to study the quality and quantity of water available over the 
years and then match this availability to the demands of 
various stakeholders. It is necessary to develop models that 
can predict the water inflow patterns and develop methods and 
techniques that can ensure proper utilization of water. The 
field of water resource modelling includes the accurate 
forecast of rainfall patterns and modelling of rainfall water 
flow [41]. It also involves the applications of various methods 
and techniques to purify collected water and wastewater for 
reuse. These processes are complex and thus the development 
of more accurate and reliable models for these processes is 
ongoing. There have been numerous attempts to develop these 
models, many of which have successfully served the purpose 

in specific situations, for example, an early attempt in 
forecasting rainfall patterns could be traced back to 1851 when 
Mulvany used self-registering rain and flood gauges to 
observe the relationship between flood discharges and rainfall 
[40]. 

On a broad scale, the different models used in water 
resource modelling are typically distinguished on the basis of 
the approach followed for describing the spatial extent of 
watershed and the hydrologic processes involved. The 
watershed models are typically classified as lumped or 
distributed models [42], [43] whereas the hydrological 
processes are classified as knowledge-driven models or data-
driven models [44]. Another category of models called 
mechanistic models use differential equations to describe the 
processes at the surface and subsurface [45], [46]. A special 
class of mechanistic models which focus on storage elements 
are called conceptual models [47], [48]. Fewer numbers of 
parameters are required to describe the system in these 
models. There are also models that use information from 
hydro-meteorological data to map the relationship between 
rainfall and runoff, these models are known as precipitation-
runoff data driven models. 

V. COMPARISON OF ARTIFICIAL INTELLIGENCE (AI) MODELS 

The important characteristics of all the models are briefly 
stated. K-nearest Neighbors algorithm (KNN) is one of the 
simplest techniques in AI. This KNN algorithm is very robust 
against noise and irrelevant attributes in the data. The 
disadvantage of KNN models is that they are unsuitable for 
real time forecasting and cannot be extrapolated [31]. Chaos 
Theory based models are accurate for long-term predictions 
but these models are applicable only if the data series is 
chaotic [34]. Similar to KNNs, the extrapolation abilities of 
these models are also poor. ANN based models have the 
advantage of being trained so fast and they map the complex 
relationships easily [49]. ANNs are also good for long term 
forecasting. These models are very robust against incomplete 
data, noise and outliers [41]. The disadvantages of ANN 
models are that they are not transparent, not easily 
interpretable and are difficult to generalize. Furthermore, these 
models cannot incorporate the knowledge about the systems 
within the model, hence it is called a black box model [50]. 
Fuzzy – Rule based systems (FRBS) can incorporate the 
structured knowledge within the model. These models are 
relatively transparent and provide some information about the 
rules used for mapping the inputs to outputs [33]. These are 
very robust to noise and very useful if the accuracy of sensors 
is low [51]. Limitations of these models include a slow 
convergence rate and an exponential increase in the number of 
rules with the increase in the number of input variables [52]. 
Support vector machines (SVMs) are easy to generalize and 
there is no increase in the number of parameters on giving 
multidimensional inputs. These models perform well even for 
small data sets [53]. The main disadvantages of SVMs is the 
requirement of a large computational capacity [53]. 
Furthermore, there is an exponential increase in training time 
when increasing the number of samples [54]. Genetic 
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Programming (GPs) have an easily understandable model 
structure but they are also computationally intensive and 
hardly provide any physical insights about the underlying 
relationships [48], [49], [52], [55]-[60]. Each model reviewed 
in this study has its advantages and disadvantages. An 
understanding of the problems to be solved and the goals to be 
achieved determines which model is best suited for the task. 
Moreover, the models are complementary, so a hybrid 
approach is often better than using a single model. The next 
section reviews some recent studies that shed more light on 
the usefulness of these models in specific situations. 

VI. RECENT APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN 

WATER RESOURCES MODELLING 

SVMs, nonparametric KNN, radial basis function NN were 
applied in the study of virtual water content of crops [61] and 
KNN was found to best serve the purpose. SVM performed 
better than the radial basis function Neutral Network (NN). In 
another study by [53], SVM was found to the best alternative 
out of a combination of SVM, probabilistic NN and KNN for 
the classification of water quality. KNN was the worst 
performer with the maximum number as well as value of 
errors [53]. GP and Adaptive Neuro-fuzzy Inference System 
(ANFIS) techniques were used for forecasting ground water 
levels by [51]. Based on different combinations of depth 
values of the water table from two stations, five GP and 
ANFIS models were developed, and forecasts were made for 
one, two and three-days ahead for the water table depths. Root 
mean square errors (RMSE), scatter index (SI), variance 
account for (VAF) and coefficient of determination (R2) 
statistics were used for measuring the performance. Both 
models successfully forecasted water table depth fluctuations 
but GP performed better than the other model, giving explicit 
expressions for the problem [51]. In yet another study carried 
out by [62], hybrid wavelet-artificial neural network (WANN) 
and linear GP (LGP) techniques were proposed for forecasting 
monthly stream flow. RMSE and Nash-Sutcliffe efficiency 
(NSE) measures were used for comparing the performance. 
The ANN method was used as the primary reference model to 
model six different monthly stream flow scenarios based on 
the records of two successive gauging stations and the main 
time series of input(s) and output records were decomposed 
into sub-time series using the wavelet transform. These sub-
time series of each model were imposed to ANN to develop 
WANN models as optimized versions of the reference ANN 
models. LGP performed better than WANN in all the 
reference models [62]. GP and ANN based methods were used 
as potential surrogate models for coastal aquifer management 
to determine the optimal rate of groundwater extraction. A 3-
D simulation model for coupled flow and transport simulation 
together with an optimization algorithm in a linked 
simulation-optimization framework was used for the 
comparison [63]. GP again performed best against the other 
three models in estimating everyday suspended sediment load 
[63]. 

VII. OVERVIEW OF GENETIC PROGRAMMING (GP) 

Genetic programming (GP), [64], which is a derivative of 
genetic algorithms (GA) is a systematic, domain-independent 
method that generates computer programs to solve problems 
automatically giving it a high level of what is expected from it 
[65]. GP involves a repeated random search for solutions from 
an existing pool of computer programs, which are potential 
solutions, by applying the principle of natural evolution such 
as crossover and mutation to form a new population [39]. This 
process continues until the best solution is obtained. These 
programs are expressed in the form of a syntax tree where the 
nodes represent the instructions called the functions, and the 
leaves, which are the terminals, represent the independent 
variables and random constants [65]. Five preliminary steps 
are necessary before the operation of GP. These include the 
determination of (i) the terminal set; (ii) the functional set; (iii) 
the fitness measure; (iv) the parameters for controlling the run; 
and (v) the termination criterion and method of designating the 
result of the run [66]. The steps involved in the 
implementation of GP are explained in details in the 
subsequent sections. According to [67] the major advantages 
of adopting GP over other soft computing techniques includes 
the following: (1) it is used when there is a large amount of 
data in computer readable form that needs to be examined, 
classified and integrated; (2) it is used in situations where 
small performance improvements are easily and routinely 
measured; (3) when the interrelationships between the 
variables are poorly understood; (4) when limited dataset is 
available; (5) when the ultimate solution to the problem is 
difficult to find; and (6) when conventional mathematical 
models cannot provide the required analytical solution [30], 
[39], [68], [69]. 

A. General Applications of Genetic Programming 

GP is a robust and dynamic model. It has been widely 
applied to solve different kinds of difficult real world 
problems [41]. GP has the capability to select the best input 
from its variables, making it possible for the input and output 
variables to be expressed as a regression equation. GP has 
been applied to all aspects of life such as in the field of water 
resources engineering, photogrammetry, medicine, biology, 
electrical engineering, science, civil engineering, industrial 
engineering, electrical power and mechanical engineering 
[69]-[72]. The review of the applications of GP in all these 
fields is beyond the scope of this study but a brief overview of 
the application of GP in selected fields is provided, with 
emphasis on sediment modelling.  

In the field of water resources management, [73] developed 
a rainfall-runoff model for predicting runoff using GP. A new 
formulation for bed concentration of suspended sediment was 
expressed by converting suspended sediment data into an 
equation for a better understanding of its generation process 
using GP techniques. In another study, the experimental flume 
data utilized by [74] was subjected to GP. This involves 
mining of data from sediment transportation near a riverbed. 
The results were compared with those from human experts and 
it was found to be very promising for mining of knowledge 
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acquired data. Furthermore, GP was used to formulate 
sedimentary particle settling velocity equations by [75].  

GP was applied by Liong, et al. [76] to predict rainfall-
runoff in a catchment area in Singapore. The intensities and 
durations of six different storms were used to train and test the 
model. From the results obtained in the study, a consistent 
relationship between rainfall and runoff was identified. This 
implies that the application of the GP technique to forecast 
rainfall-runoff is a better alternative to other traditional 
models. The prediction of velocity of flow on wetlands and 
vegetated areas using the GP technique was explored by [77]. 
They discovered a symbolic expression from laboratory data 
that showed a better understanding of the effect of vegetation 
on velocity and discovery processes. GP and Artificial Neural 
Network (ANN) techniques were used to predict and model 
the rainfall-runoff relationship of a typical urban basin by 
[50]. Sivapragasam et al. [39] examined the relationship 
between storage and discharge in the Walla Walla river in the 
United State of America (USA). The researchers discovered 
that this relationship is insufficient for routing flood 
hydrographs on natural channels. Therefore, a GP model was 
developed for routing flood hydrographs. The developed 
model was very effective for routing complex flood 
hydrographs and it was able to express the route in a simple 
and mathematical expression.  

Giustolisi [68] used GP to determine the coefficient of 
Chezy resistance in corrugated channels by using three 
corrugated plastic pipes to measure hydraulic parameters. His 
work produced two GP equations for Chezy resistance 
coefficients which represents the experiment data. Also,  [78] 
used GP to predict soil characteristic curve by conducting 
pressure plate tests on silty clay, clay, loam and sandy loam 
using Soil Vision software. The test results were used for 
training and testing the GP model and the resultant model was 
compared with experimental results and other models, and GP 
model was found to be superior to them. Rabunal et al. [79] 
used GP to predict the unit hydrograph of a typical urban basin 
in conjunction with ANN. The two models were combined to 
establish an accurate relationship between rainfall and runoff 
in that basin.  

GP was also used to predict short-term and long-term river 
flows and the result was found to be more accurate compared 
with that from ANFIS techniques [80]. In another study, [51] 
predicted groundwater table depth fluctuations using GEP and 
ANFIS. The results showed that both models can be used to 
successively predict the fluctuation but that GEP models were 
found to be more accurate. Shiri et al. [81] used limited 
climatic variables to model daily reference evapotranspiration, 
and also found that GEP performed better than ANFIS. In all 
the situations where the GP technique was applied, it proved 
itself to be accurate and superior to other techniques. 

B. Sediment Modelling Using GP Approach 

The GP approach has also been used successfully and 
intensively as a hydrological modelling tool especially for 
estimating sediment yield. Kizhisseri et al. [82] employed GP 
to develop a better sediment-temporal pattern of fluid field 

relationship, using numerical model results and Sandy Duck 
field data. Also, [35] developed an explicit relationship 
between daily suspended sediment and discharge using GP. 
Their results suggested that GP is a better technique than the 
sediment rating curve and multi-linear regression techniques 
and that GP is more practicable to use. 

Garg [10] explored the ability of GP to estimate sediment 
yield in the Arno River basin in Italy which is susceptible to 
flooding. Five variables – river length, drainage density, 
yearly average rainfall, erodible area and watershed area, were 
used as input variables in this study and the results showed 
that GP is an efficient and reliable technique for estimating 
sediment yield even when the data set is limited. In a study 
carried out by [83], three soft computing techniques namely, 
Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and Artificial Neural Networks 
(ANNs) were used to estimate daily suspended sediment load 
in the Eel River near Dos Rios, in California, USA. Suspended 
sediment load, stream flow and daily rainfall data were used as 
input for developing the models. The results, when compared, 
show that the GEP model is superior to the other developed 
models in predicting daily suspended load in the river.  

LGP, GEP, and ANN techniques were used in the 
estimation of daily suspended sediment in the Tongue River in 
Montana, USA. Discharge and suspended sediment data from 
two stations on the river were used as inputs. GEP performed 
better than ANN but LGP models were found to be superior to 
the GEP models [84]. Also, in a study by [85], GP model 
trees, (MT) and ANN, which are data driven models, were 
used for the estimation of the quantity of sediment deposited 
in Gobindsagar reservoir [85]. It was found that both GP and 
ANN, which are nonlinear models, captured the trend of 
sediment deposition into the reservoir better than linear model 
trees (MT) [85].  

GP models were also compared with SVM, ANFIS and 
ANN models by [86]. Daily discharge and sediment yield data 
from 1972 to 1989 obtained from two stations on the 
Cumberland River in the United States of America was used 
to test and train the models. The predicted outputs from the 
developed GP models were compared with those from the 
SVM, ANFIS and ANN models. The results showed that the 
GP models are superior to the other three models in predicting 
sediment yield. In another study, the data set of discharge and 
suspended sediment yield from Rio Valenciano and Quebrada 
Blanca Stations operated by the US Geological Survey 
(USGS) were also used as training and testing data by [87]. 
The performance of the developed LGP model, which is an 
extension of GP, and those of ANFIS and ANN models were 
compared using standard model evaluation criteria. 
Furthermore, it was discovered that the LGP model is superior 
and more accurate than both the ANFIS and ANN models.  

In conclusion, GP models have been found to exhibit 
exceptional performance when used as regression models in 
the majority of the case studies mentioned, especially for 
pattern recognition and complex non-linear estimations. It was 
also found that GP is less prone to over-fitting during training 
with observation datasets [84]. In all, the application of GP 
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may serve as a decisive factor in the planning, construction, 
operation, management and maintenance of water resources 
projects. 

C. Evaluations of GP Theories and Principles  

Irrespective of the wide acceptance and application of GP in 
solving complex problems and its application in diverse areas 
of life, there appears to be an eminent need to critically 
evaluate its theories and principles. According to [88], 
comparison between studies is very difficult because of the 
absence of standardization among the studies. It was claimed 
that the development of standard benchmarks is a very 
important step necessary for the maturation of the GP field. It 
should be noted that most of the studies reviewed applied GP 
to solve domain-specific and nontrivial problems; hence, 
simple benchmarks were used for analysis and comparison 
studies. This is detrimental to the advancement of the GP 
approach. O’Neill et al. [89] also stated that the development 
of a good benchmark suite is an issue to be considered in the 
next 10 years of GP. According to [88], a good benchmark 
should have the following qualities: relevance; speed; 
variance; accommodating to implementers; representation-
independent; easy to interpret and compare; current; and 
precisely defined. Examples of current benchmarks include: 
predictive modelling; classification; binary functions; and 
symbolic regression [88]. It was further suggested by [88] that 
a candidate benchmark suite needs to be deliberated upon by 
the GP community. Another issue that needs serious attention 
is the generalization capability of GP solutions. GP should be 
able to produce the same generalization performance from 
training data set for unseen data. This ability is affected by 
bloating and over-fitting. Naik and Dabhi [90] surveyed and 
classified the various methods used in controlling bloating. 
Four bloat - control techniques were identified, namely: 
double tournament method; lexicographic parsimony pressure 
with ratio bucketing; lexicographic parsimony pressure with 
direct bucketing; and tarpeian method. These methods were 
applied to six different problems and the outcomes were 
analysed against each other. Based on this, tarpeian method 
and double tournament method were combined and used on 
the six problems. The study stated that the combination of 
these two methods performed better than the individual 
methods, except on a multi-valued regression problem without 
a constant [90]. 

It is tought that GP has a simple algorithm but the process 
of obtaining a sound theoretical model and precise 
mathematical results has been difficult to obtain spanning 
many years after the origin of the GP technique [91]. 
According to [92], the delay for this was as a result of the 
different versions of GP requiring different theoretical models. 
In addition, the different representations of GP such as tree-
based, graph-based and linear, differ in dynamics and require 
different theoretical tools. Theoreticians are facing a lot of 
challenges due to the non-linearities, randomness, and 
numerous degrees of freedom present in a typical GP system 
as well as in Grammatical Evolution (GE) [93], Evolution 
Programming (EP) [94] and Cartesian GP (CGP) [95].  

Poli et al. [92] also highlighted some fundamental questions 
that needs the attention of the GP community. Questions such 
as: What goes wrong when GP cannot solve a problem? Is the 
biasness of its genetic operators fully understood? Can the 
properties of both GP systems and GP problems be expressed 
in a common language? How should current GP theory be 
adapted to suit dynamic environments? These questions and 
many more need to be addressed and are meant to stimulate 
researchers into improving the theories behind GP. 

Some very important open issues in GP were discussed in 
[89] which started at a panel discussion at the EuroGP series 
of conferences which began in 1998. Some of the issues 
include: representing GP appropriately; determining the level 
of difficulty of a problem for GP; comparing the performance 
of GP in both static and dynamic environments; determining 
the level of natural evolution. For complete and 
comprehensive details of these open issues readers are referred 
to [89]. These issues are meant to help researchers improve the 
techniques of GP and to stimulate future research to provide 
greater knowledge and strengthen the GP algorithm. 

VIII. CONCLUSION 

The applications of AI models and techniques to real life 
situations have brought greater understanding to evolutionary 
computing. GP approaches have been used successfully in 
providing solutions to many complex problems in the fields of 
hydrology, medicine, biology, photogrammetry, 
telecommunications and network, finance, gaming and 
engineering. In this paper, certain areas of the application of 
GP were also highlighted, with specific emphasis on the 
applications of GP to sediment yield modelling. The 
community of GP operators and researchers needs to be 
optimistic because as this approach matures, important 
advances in the theory of GP are being achieved.  

Although progress has been made and opportunities have 
opened up in this field over the past decades, there are still 
some open issues that needs the attention of the GP 
communities. Although the review in this study may not be 
exhaustive, it is meant to give GP theoreticians and the general 
community of GP sufficient research direction and open issues 
that needs attention. These open issues and the successes made 
in the application of GP to solve complex and nonlinear 
problems should be discussed in the literature so that it can 
spread into the science and research communities. This will 
generate more intellectual and productive discussions that will 
eventually lead to the advancement of GP technique. 

The following factors also affect the choice of a model: (1) 
the intended model capabilities and features; (2) the simplicity 
of the model and output scales and; (3) the assumptions made 
in using the model; (4) validity and accuracy of the model and 
(5) the data required by the model [6]. In addition, in selecting 
the appropriate model, the choice of a model depends mainly 
on its purpose, so a model may not necessarily be used for all 
modelling situations. The choice of a model largely depends 
on where the emphasis will be laid, that is, either on the 
processes of the work or on the expected output that addresses 
the problem. 
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Recently a combination of different AI models has been 
used for finding optimal solutions. For example, [96] used a 
wavelet analysis and GP method to construct a hybrid model 
for optimizing rainfall-runoff time process modeling [96]. The 
hybrid model that linked wavelet analysis to GP used 
sensitivity analysis for identifying input variables of an ANN 
rainfall-runoff model. Furthermore, the time series of both the 
rainfall and runoff variables, were decomposed into many 
multi-frequency time series using the wavelet transform and 
these were imposed to the GP as input data to optimize the 
structure of ANN modeling. The results could be compared 
favorably to both GP and ANN models. The same 
methodology also worked in predicting the suspended 
sediment load in rivers [97]. The introduction of wavelet 
coefficient inputs from wavelet GP and wavelet neuro-fuzzy, 
for forecasting daily precipitation on the basis of previously 
recorded results, resulted in an improvement of the forecasting 
results. Further enhancement of the model by merging the 
inputs from both (best single model and hybrid models) and 
using these as the model inputs, enabled the new hybrid 
wavelet GP models to successfully predict the daily 
precipitation, although the neuro-fuzzy models still performed 
badly [98].  

A combination of Extended Kalman Filter (EKF) with GP 
was used by [4] to forecast the water demand in urbanized 
areas. The latent variables were inferred from the EKF. Five 
models were presented where the first five-three lags of 
observed water requirement were used as the independent and 
most probable inputs. The effect of observation precision on 
water demand prediction was clearly evident in their findings.  
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