Search results for: Contact stiffness.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 783

Search results for: Contact stiffness.

723 Evaluation of TRIS-DMA-NVP Hydrogels for Making Silicone-Based Contact Lenses

Authors: N. P. D. Tran, H. Q. D. Nguyen, M. C. Yang

Abstract:

In this study, contact lenses were prepared through the polymerization of tris-(trimethyl-silyl-propyl-methacrylate) (TRIS), N,N-dimethylacrylamide (DMA), N-vinylpyrrolidone (NVP), and cross-linked with ethylene glycol dimethylacrylate (EGDMA). The equilibrium water content (EWC), oxygen permeability (Dk), light transmittance, and in vitro cytotoxicity of TRIS-DMA-NVP with various ratios were measured. The results showed that the EWC increased while the Dk decreased with the increase of NVP content. For the sample with 25 wt% NVP, the EWC attained 53% whereas the Dk decreased to 46 barrers. All these lenses exhibited light transmittance over than 95%. In addition, all these lenses exhibited no inhibition to the growth of L292 fibroblasts. Thus, this study showed that TRIS-DMA-NVP can be applicable for making contact lens.

Keywords: DMA, TRIS, NVP, silicone hydrogel, contact lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
722 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
721 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes

Authors: Hassan A. Alshahrani, Mehdi H. Hojjati

Abstract:

In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.

Keywords: Bending stiffness, out of autoclave prepreg, forming process, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
720 Effect of Preloading on the Contact Stress Distribution of a Dovetail Interface

Authors: Kaliyaperumal Anandavel, Raghu V. Prakash, Antonio Davis

Abstract:

This paper presents the influence of preloading on a) the contact tractions, b) slip levels and c) stresses at the dovetail blade-disc interface of an aero-engine through a three-dimensional (3D) finite element (FE) modeling and analysis. The preloading is applied by an interference fit at the dovetail interface and the bulk loading is applied through the rotational speed of rotor. Preloading at the dovetail interface reduces the peak contact pressure developed due to bulk loading up to 35%, and reduces the peak contact pressure and stress difference between top and bottom contact edges. Increasing the level of preloading reduces the cyclic stress amplitude at the interface up to certain values of preload and as a consequence, an improvement in fatigue life could be expected. Fretting damage, due to vibration and wind milling effect during engine ground condition, can be minimized by preloading the dovetail interface.

Keywords: Dovetail interface, Preload, Interference fit, ContactStress, Fretting Fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203
719 Use of Cell Phone by Farmers and its Implication on Farmers- Production Capacity in Oyo State Nigeria

Authors: Bolarinwa, K. K., Oyeyinka, R. A.

Abstract:

Relevant agricultural information disseminator (extension agent) ratio of 1:3500 farm families which become a menace to agricultural production capacity in developing countries necessitate this study. Out of 4 zones in the state, 24 extension agents in each zone, 4 extension agents using cell phones and 120 farmers using cell phone and 120 other farmers not using cell phone were purposively selected to give 240 farmers that participated in the research. Data were collected using interview guide and analysized using frequency, percentage and t-test.. Frequency of contact with agricultural information centers revealed that cell phone user farmers had greater means score of X 41.43 contact as against the low mean X19.32 contact recorded by farmers receiving agricultural information from extension agents not using cell phone and their production was statistically significant at P < 0.05. Usage of cell phone increase extension agent contact and increase farmers- production capacity.

Keywords: Cell phone, contact, extension agents and production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2869
718 Power Distance and Knowledge Management from a Post-Taylorist Perspective

Authors: John Walton, Vishal Parikh

Abstract:

Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.

Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
717 3D Frictionless Contact Case between the Structure of E-Bike and the Ground

Authors: Lele Zhang, HuiLeng Choo, Alexander Konyukhov, Shuguang Li

Abstract:

China is currently the world's largest producer and distributor of electric bicycle (e-bike). The increasing number of e-bikes on the road is accompanied by rising injuries and even deaths of e-bike drivers. Therefore, there is a growing need to improve the safety structure of e-bikes. This 3D frictionless contact analysis is a preliminary, but necessary work for further structural design improvement of an e-bike. The contact analysis between e-bike and the ground was carried out as follows: firstly, the Penalty method was illustrated and derived from the simplest spring-mass system. This is one of the most common methods to satisfy the frictionless contact case; secondly, ANSYS static analysis was carried out to verify finite element (FE) models with contact pair (without friction) between e-bike and the ground; finally, ANSYS transient analysis was used to obtain the data of the penetration p(u) of e-bike with respect to the ground. Results obtained from the simulation are as estimated by comparing with that from theoretical method. In the future, protective shell will be designed following the stability criteria and added to the frame of e-bike. Simulation of side falling of the improvedsafety structure of e-bike will be confirmed with experimental data.

Keywords: Frictionless contact, penalty method, e-bike, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
716 A 3 Dimensional Simulation of the Repeated Load Triaxial Test

Authors: Bao Thach Nguyen, Abbas Mohajerani

Abstract:

A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.

Keywords: Discrete element method, repeated load triaxial, pavement materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
715 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel during Pin on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load, while dropped with the increase in ambient temperature. The highest Tdiff was 289 °C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400 °C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data was revealed good agreement.

Keywords: Pin-on-disk test, contact temperature, wear, sliding surface, friction, ambient temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8
714 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.

Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
713 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: Contact area, energy absorbing capacity, hysteresis, seismic isolation device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
712 Fixture Layout Optimization Using Element Strain Energy and Genetic Algorithm

Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino

Abstract:

The stiffness of the workpiece is very important to reduce the errors in manufacturing process. The high stiffness of the workpiece can be achieved by optimal positioning of fixture elements in the fixture. The minimization of the sum of the nodal deflection normal to the surface is used as objective function in previous research. The deflection in other direction has been neglected. The 3-2-1 fixturing principle is not valid for metal sheets due to its flexible nature. We propose a new fixture layout optimization method N-3-2-1 for metal sheets that uses the strain energy of the finite elements. This method combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of all the element strain energy. By using the concept of element strain energy, the deformations in all the directions have been considered. Strain energy and stiffness are inversely proportional to each other. So, lower the value of strain energy, higher will be the stiffness. Two different kinds of case studies are presented. The case studies are solved for both objective functions; element strain energy and nodal deflection. The result are compared to verify the propose method.

Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
711 Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads

Authors: Mahmoud Miri, Soliman Maramaee

Abstract:

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Keywords: Asymmetric, irregular, seismic analysis, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
710 Silicon Nanowire for Thermoelectric Applications: Effects of Contact Resistance

Authors: Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, S. J. Lee

Abstract:

Silicon nanowire (SiNW) based thermoelectric device (TED) has potential applications in areas such as chip level cooling/ energy harvesting. It is a great challenge however, to assemble an efficient device with these SiNW. The presence of parasitic in the form of interfacial electrical resistance will have a significant impact on the performance of the TED. In this work, we explore the effect of the electrical contact resistance on the performance of a TED. Numerical simulations are performed on SiNW to investigate such effects on its cooling performance. Intrinsically, SiNW individually without the unwanted parasitic effect has excellent cooling power density. However, the cooling effect is undermined with the contribution of the electrical contact resistance.

Keywords: Thermoelectric, silicon, nanowire, electrical contact resistance, parasitics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
709 Building an Inferential Model between Caregivers and Patients by using RFID

Authors: Yung-Ting Chang, Chung-You Tsai, Yu-Chuan Li

Abstract:

Nosocomial (i.e., hospital-acquired) infections (NI) is a major cause of morbidity and mortality in hospitals. NI rate is higher in intensive care units (ICU) than in the general ward due to patients with severe symptoms, poor immunity, and accepted many invasive therapies. Contact behaviors between health caregivers and patients is one of the infect factors. It is difficult to obtain complete contact records by traditional method of retrospective analysis of medical records. This paper establishes a contact history inferential model (CHIM) intended to extend the use of Proximity Sensing of rapid frequency identification (RFID) technology to transferring all proximity events between health caregivers and patients into clinical events (close-in events, contact events and invasive events).The results of the study indicated that the CHIM can infer proximity care activities into close-in events and contact events. The infection control team could redesign and build optimal workflow in the ICU according to the patient-specific contact history which provided by our automatic tracing system.

Keywords: Active Radio Frequency Identification, Intensive Care Unit, Nosocomial Infections

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
708 Contact Problem for an Elastic Layered Composite Resting on Rigid Flat Supports

Authors: T. S. Ozsahin, V. Kahya, A. Birinci, A. O. Cakiroglu

Abstract:

In this study, the contact problem of a layered composite which consists of two materials with different elastic constants and heights resting on two rigid flat supports with sharp edges is considered. The effect of gravity is neglected. While friction between the layers is taken into account, it is assumed that there is no friction between the supports and the layered composite so that only compressive tractions can be transmitted across the interface. The layered composite is subjected to a uniform clamping pressure over a finite portion of its top surface. The problem is reduced to a singular integral equation in which the contact pressure is the unknown function. The singular integral equation is evaluated numerically and the results for various dimensionless quantities are presented in graphical forms.

Keywords: Frictionless contact, Layered composite, Singularintegral equation, The theory of elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
707 Analytical Crack Propagation Scenario for Gear Teeth and Time-Varying Gear Mesh Stiffness

Authors: Omar D. Mohammed, Matti Rantatalo, Uday Kumar

Abstract:

In this paper an analytical crack propagation scenario is proposed which assumes that a crack propagates in the tooth root in both the crack depth direction and the tooth width direction, and which is more reasonable and realistic for non-uniform load distribution cases than the other presented scenarios. An analytical approach is used for quantifying the loss of time-varying gear mesh stiffness with the presence of crack propagation in the gear tooth root. The proposed crack propagation scenario can be applied for crack propagation modelling and monitoring simulation, but further research is required for comparison and evaluation of all the presented crack propagation scenarios from the condition monitoring point of view.

Keywords: Crack propagation, Gear tooth crack, Time varying gear mesh stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
706 Spine Evaluation Device with Visual Feedback

Authors: T. Hirata, G. H. Yokoyama, L. H. M. Duque

Abstract:

The posteroanterior manipulation technique is usually include in the procedure of the lumbar spine to evaluate the intervertebral motion according to mechanical resistance. The mechanical device with visual feedback was proposed that allows one to analysis the lumbar segments mobility “in vivo" facilitating for the therapist to take its treatment evolution. The measuring system uses load cell and displacement sensor to estimate spine stiffness. In this work, the device was tested by 2 therapists, female, applying posteroanterior force techniques to 5 volunteers, female, with frequency of approximately 1.2-1.8 Hz. A test-retest procedure was used for 2 periods of day. The visual feedback results small variation of forces and cycle time during 6 cycles rhythmic application. The stiffness values showed good agreement between test-retest procedures when used same order of maximum forces.

Keywords: Biomechanics, lumber spine stiffness, intervertebral manipulation device, visual feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
705 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
704 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
703 The Effect of Shear Wall Positions on the Seismic Response of Frame-Wall Structures

Authors: Anas M. Fares

Abstract:

The configuration of shear walls in plan of building will affect the seismic design of structure. The position of these walls will change the stiffness of each floor in the structure, the diaphragm center of mass displacement, and the drift of floor. Structural engineers preferred to distribute the walls in buildings to make the center of mass almost close enough to the center of rigidity, but to make this condition satisfied, they have many choices: construct the walls on the perimeter, or use intermediate walls, or use walls as core. In this paper and by using ETABS, each case is studied and compared to other cases according to three parameters: lateral stiffness, diaphragm displacement, and drift. It is found that the core walls are the best choice for the position of the walls in the buildings to resist earthquake loads.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, seismic, ASCE7-16 code, ACI code, stiffness, drift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
702 Effect of Columns Stiffness's and Number of Floors on the Accuracy of the Tributary Area Method

Authors: Anas M. Fares

Abstract:

The using of finite element programs in analyzing and designing buildings are becoming very popular, but there are many engineers still using the tributary area method (TAM) in designing the structural members such as columns. This study is an attempt to investigate the accuracy of the TAM results with different load condition (gravity and lateral load), different floors numbers, and different columns stiffness's. To conduct this study, linear elastic analysis in ETABS program is used. The results from finite element method are compared to those obtained from TAM. According to the analysis of the data obtained, it can be seen that there is significance difference between the real load carried by columns and the load which is calculated by using the TAM. Thus, using 3-D models are the best choice to calculate the real load effected on columns and design these columns according to this load.

Keywords: Tributary area method, finite element method, ETABS, lateral load, axial loads, reinforced concrete, stiffness, multi-floor buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
701 Shock Induced Damage onto Free-Standing Objects in an Earthquake

Authors: Haider AlAbadi, Joe Petrolito, Nelson Lam, Emad Gad

Abstract:

In areas of low to moderate seismicity many building contents and equipment are not positively fixed to the floor or tied to adjacent walls. Under seismic induced horizontal vibration, such contents and equipment can suffer from damage by either overturning or impact associated with rocking. This paper focuses on the estimation of shock on typical contents and equipment due to rocking. A simplified analytical model is outlined that can be used to estimate the maximum acceleration on a rocking object given its basic geometric and mechanical properties. The developed model was validated against experimental results. The experimental results revealed that the maximum shock acceleration can be underestimated if the static stiffness of the materials at the interface between the rocking object and floor is used rather than the dynamic stiffness. Excellent agreement between the model and experimental results was found when the dynamic stiffness for the interface material was used, which was found to be generally much higher than corresponding static stiffness under different investigated boundary conditions of the cushion. The proposed model can be a beneficial tool in performing a rapid assessment of shock sensitive components considered for possible seismic rectification. 

Keywords: Impact, shock, earthquakes, rocking, building contents, overturning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
700 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
699 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constrains. Therefore the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: Laser cleavage, controlled fracture, contact ball lens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
698 Development of Electric Performance Testing System for Ceramic Chips using PZT Actuator

Authors: Jin-Ho Bae, Yong-Tae Kim, S K Deb Nath, Seo-Ik Kang, Sung-Gaun Kim

Abstract:

Reno-pin contact test is a method that is controlled by DC motor used to characterize electronic chips. This method is used in electronic and telecommunication devices. A new electric performance testing system is developed in which the testing method is controlled by using Piezoelectric Transducer (PZT) instead of DC motor which reduces vibration and noise. The vertical displacement of the Reno-pin is very short in the Reno-pin contact testing system. Now using a flexible guide in the new Reno-pin contact system, the vertical movement of the Reno-pin is increased many times of the existing Reno-pin contact testing method using DC motor. Using the present electric performance testing system with a flexible hinge and PZT instead of DC motor, manufacturing of electronic chips are able to characterize chips with low cost and high speed.

Keywords: PZT Actuator, Chip test, Mechanical amplifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
697 Evaluation of the FWD Moduli of a Flexible Pavement Using Finite Element Model

Authors: Md Rashadul Islam, Mesbah U. Ahmed, Rafiqul A. Tarefder

Abstract:

This study evaluates the back calculation of stiffness of a pavement section on Interstate 40 (I-40)in New Mexico through numerical analysis. Falling Weight Deflectometer (FWD) test has been conducted on a section on I-40. Layer stiffness of the pavement has been backcalculated by a backcalculation software, ELMOD, using the FWD test data. Commercial finite element software, ABAQUS, has been used to develop the Finite Element Model (FEM) of this pavement section. Geometry and layer thickness are collected from field coring. Input parameters i.e. stiffnesses of different layers of the pavement are used as the backcalculated ones. Resulting surface deflections at different radial distances from the FEM analysis are compared with field FWD deflection values. It shows close agreement between the FEM and FWD outputs. Therefore, the FWD test method can be considered to be a reliable test procedure for evaluating the in situ stiffness of pavement material.

Keywords: Falling weight deflectometer test, Finite element model, Flexible pavement, moduli, surface deflection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
696 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface

Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L.-C. Hsu

Abstract:

In this paper a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.

Keywords: Aerostatic, bearing, elastomer, static stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
695 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3634
694 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490