Search results for: Antibiotic & Heavy Metal Resistance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1757

Search results for: Antibiotic & Heavy Metal Resistance.

1697 Heavy Metal Reduction in Plant Using Soil Amendment

Authors: C. Chaiyaraksa, T. Khamko

Abstract:

This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.

Keywords: Heavy metals, limestone, sepiolite, soil, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
1696 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: Bio-electrochemical, nanowires, wastewater, treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
1695 Bio-Estimation of Selected Heavy Metals in Shellfish and Their Surrounding Environmental Media

Authors: Ebeed A. Saleh, Kadry M. Sadek, Safaa H. Ghorbal

Abstract:

Due to the determination of the pollution status of fresh resources in the Egyptian territorial waters is very important for public health; this study was carried out to reveal the levels of heavy metals in the shellfish and their environment and its relation to the highly developed industrial activities in those areas. A total of 100 shellfish samples from the Rosetta, Edku, El-Maadiya, Abo-Kir and El-Max coasts [10 crustaceans (shrimp) and 10 mollusks (oysters)] were randomly collected from each coast. Additionally, 10 samples from both the water and the sediment were collected from each coast. Each collected sample was analyzed for cadmium, chromium, copper, lead and zinc residues using a Perkin Elmer atomic absorption spectrophotometer (AAS). The results showed that the levels of heavy metals were higher in the water and sediment from Abo-Kir. The heavy metal levels decreased successively for the Rosetta, Edku, El-Maadiya, and El-Max coasts, and the concentrations of heavy metals, except copper and zinc, in shellfish exhibited the same pattern. For the concentration of heavy metals in shellfish tissue, the highest was zinc and the concentrations decreased successively for copper, lead, chromium and cadmium for all coasts, except the Abo-Kir coast, where the chromium level was highest and the other metals decreased successively for zinc, copper, lead and cadmium. In Rosetta, chromium was higher only in the mollusks, while the level of this metal was lower in the crustaceans; this trend was observed at the Edku, El-Maadiya and El-Max coasts as well. Herein, we discuss the importance of such contamination for public health and the sources of shellfish contamination with heavy metals. We suggest measures to minimize and prevent these pollutants in the aquatic environment and, furthermore, how to protect humans from excessive intake.

Keywords: Atomic absorption, heavy metals, sediment, shellfish, water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
1694 Removal of Heavy Metals from Wastewater by Adsorption and Membrane Processes: a Comparative Study

Authors: Nermen N. Maximous, George F. Nakhla, W. K. Wan

Abstract:

This research aimed at investigating the Cr (III), Cd (II) and Pb (II) removal efficiencies by using the newly synthesized metal oxides/ polyethersulfone (PES), Al2O3/PES and ZrO2/PES, membranes from synthetic wastewater and exploring fouling mechanisms. A Comparative study between the removal efficiencies of Cr (III), Cd (II) and Pb (II) from synthetic and natural wastewater by using adsorption onto agricultural by products and the newly synthesized Al2O3/PES and ZrO2/PES membranes was conducted to assess the advantages and limitations of using the metal oxides/PES membranes for heavy metals removal. The results showed that about 99 % and 88 % removal efficiencies were achieved by the tested membranes for Pb (II) and Cr (III), respectively.

Keywords: Adsorption, metals removal, ultrafiltrationmembranes, wastewater

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5684
1693 Potential of Sunflower (Helianthus annuus L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Krasimir I. Ivanov, Huu Q. Lee

Abstract:

A field study was conducted to evaluate the efficacy of the sunflower (Helianthus annuus L.) for phytoremediation of contaminated soils. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. Field experiments with a randomized, complete block design with five treatments (control, compost amendments added at 20 and 40 t/daa, and vemicompost amendments added at 20 and 40 t/daa) were carried out. The accumulation of heavy metals in the sunflower plant and the quality of the sunflower oil (heavy metals and fatty acid composition) were determined. The tested organic amendments significantly influenced the uptake of Pb, Zn and Cd by the sunflower plant. The incorporation of 40 t/decare of compost and 20 t/decare of vermicompost to the soil led to an increase in the ability of the sunflower to take up and accumulate Cd, Pb and Zn. Sunflower can be subjected to the accumulators of Pb, Zn and Cd and can be successfully used for phytoremediation of contaminated soils with heavy metals. The 40 t/daa compost treatment led to a decrease in heavy metal content in sunflower oil to below the regulated limits. Oil content and fatty acids composition were affected by compost and vermicompost amendment treatments. Adding compost and vermicompost increased the oil content in the seeds. Adding organic amendments increased the content of stearic, palmitoleic and oleic acids, and reduced the content of palmitic and gadoleic acids in sunflower oil. The possibility of further industrial processing of seeds to oil and use of the obtained oil will make sunflowers economically interesting crops for farmers of phytoremediation technology.

Keywords: Heavy metals, organic amendments, phytoremediation, sunflower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3936
1692 Assessment of Heavy Metal Concentrations in Tunas Caught from Lakshweep Islands, India

Authors: Mahesh Kumar Farejiya, Anil Kumar Dikshit

Abstract:

The toxic metal contamination and their biomagnification in marine fishes is a serious public health concern specially, in the coastal areas and the small islands. In the present study, concentration of toxic heavy metals like zinc (Zn), cadmium (Cd), lead (Pb), nickel (Ni), cobalt (Co), chromium (Cr) and mercury (Hg) were determined in the tissues of tunas (T. albacores) caught from the area near to Lakshdweep Islands. The heavy metals are one of the indicators for the marine water pollution. Geochemical weathering, industrialization, agriculture run off, fishing, shipping and oil spills are the major pollutants. The presence of heavy toxic metals in the near coastal water fishes at both western coast and eastern coast of India has been well established. The present study was conducted assuming that the distant island will not have the metals presence in a way it is at the near main land coast. However, our study shows that there is a significant amount of the toxic metals present in the tissues of tuna samples. The gill, lever and flash samples were collected in waters around Lakshdweep Islands. They were analyzed using ICP–AES for the toxic metals after microwave digestion. The concentrations of the toxic metals were found in all fish samples and the general trend of presence was in decreasing order as Zn > Al > Cd > Pb > Cr > Ni > Hg. The amount of metals was found to higher in fish having more weight.

Keywords: Biomagnifications, marine environment, toxic heavy metals, Tuna fish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
1691 GIS-Based Spatial Distribution and Evaluation of Selected Heavy Metals Contamination in Topsoil around Ecton Mining Area, Derbyshire, UK

Authors: Zahid O. Alibrahim, Craig D. Williams, Clive L. Roberts

Abstract:

The study area (Ecton mining area) is located in the southern part of the Peak District in Derbyshire, England. It is bounded by the River Manifold from the west. This area has been mined for a long period. As a result, huge amounts of potentially toxic metals were released into the surrounding area and are most likely to be a significant source of heavy metal contamination to the local soil, water and vegetation. In order to appraise the potential heavy metal pollution in this area, 37 topsoil samples (5-20 cm depth) were collected and analysed for their total content of Cu, Pb, Zn, Mn, Cr, Ni and V using ICP (Inductively Coupled Plasma) optical emission spectroscopy. Multivariate Geospatial analyses using the GIS technique were utilised to draw geochemical maps of the metals of interest over the study area. A few hotspot points, areas of elevated concentrations of metals, were specified, which are presumed to be the results of anthropogenic activities. In addition, the soil’s environmental quality was evaluated by calculating the Mullers’ Geoaccumulation index (I geo), which suggests that the degree of contamination of the investigated heavy metals has the following trend: Pb > Zn > Cu > Mn > Ni = Cr = V. Furthermore, the potential ecological risk, using the enrichment factor (EF), was also specified. On the basis of the calculated amount or the EF, the levels of pollution for the studied metals in the study area have the following order: Pb>Zn>Cu>Cr>V>Ni>Mn.

Keywords: Heavy metals, GIS, multivariate analysis, geoaccumulation index, enrichment factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
1690 Biosorption of Heavy Metals Contaminating the Wonderfonteinspruit Catchment Area using Desmodesmus sp.

Authors: P.P. Diale, E. Muzenda, T.S. Matambo, D. Glasser, D. Hildebrandt, J. Zimba

Abstract:

A vast array of biological materials, especially algae have received increasing attention for heavy metal removal. Algae have been proven to be cheaper, more effective for the removal of metallic elements in aqueous solutions. A fresh water algal strain was isolated from Zoo Lake, Johannesburg, South Africa and identified as Desmodesmus sp. This paper investigates the efficacy of Desmodesmus sp.in removing heavy metals contaminating the Wonderfonteinspruit Catchment Area (WCA) water bodies. The biosorption data fitted the pseudo-second order and Langmuir isotherm models. The Langmuir maximum uptakes gave the sequence: Mn2+>Ni2+>Fe2+. The best results for kinetic study was obtained in concentration 120 ppm for Fe3+ and Mn2+, whilst for Ni2+ was at 20 ppm, which is about the same concentrations found in contaminated water in the WCA (Fe3+115 ppm, Mn2+ 121 ppm and Ni2+ 26.5 ppm).

Keywords: Biosorption, Green algae, Heavy metals, Remediation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
1689 The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

Authors: Violina R. Angelova, Sava G. Tabakov, Aleksander B. Peltekov, Krasimir I. Ivanov

Abstract:

A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.

Keywords: Aronia, chemical composition, fruits, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1133
1688 Risk Assessment of Lead in Egyptian Vegetables and Fruits from Different Environments

Authors: A. A. K. Abou-Arab, M. A. Abou Donia, Sherif R. Mohamed, A. K. Enab

Abstract:

Lead being a toxic heavy metal that mankind is exposed to the highest levels of this metal. There are different sources of environmental pollution with lead as lead alkyl additives in petrol and manufacturing processes. The contaminated atmosphere in urban and industrial areas by lead in Egypt may lead to the contamination of foods beside the other different sources. The present investigation studied the risk assessment of lead in some Egyptian edible vegetables and fruits collected from different environments in Greater Cairo Governorate, i.e. industrial, heavy traffic and rural areas. A total of 325 leafy and fruity vegetables and fruits samples belonging to 11, 6 and 4 different species, respectively were randomly collected from markets of the three main models. Data indicated the variation of lead levels in different three areas. The highest levels of lead were detected in the samples collected from industrial and traffic areas. However, the lowest levels were found in the rural areas. It could be concluded that determination of lead levels in foods from different localities and environments at regularly is very important.

Keywords: Heavy metals, Lead, Vegetables, Fruits, Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1687 Bioleaching of Heavy Metals from Sewage Sludge Using Indigenous Iron-Oxidizing Microorganisms: Effect of Substrate Concentration and Total Solids

Authors: Ashish Pathak, M. G. Dastidar, T. R. Sreekrishnan

Abstract:

In the present study, the effect of ferrous sulfate concentration and total solids on bioleaching of heavy metals from sewage sludge has been examined using indigenous iron-oxidizing microorganisms. The experiments on effects of ferrous sulfate concentrations on bioleaching were carried out using ferrous sulfate of different concentrations (5-20 g L-1) to optimize the concentration of ferrous sulfate for maximum bioleaching. A rapid change in the pH and ORP took place in first 2 days followed by a slow change till 16th day in all the sludge samples. A 10 g L-1 ferrous sulfate concentration was found to be sufficient in metal bioleaching in the following order: Zn: 69%>Cu: 52%>Cr: 46%>Ni: 45. Further, bioleaching using 10 g/L ferrous sulfate was found to be efficient up to 20 g L-1 sludge solids concentration. The results of the present study strongly indicate that using 10 g L-1 ferrous sulfate indigenous iron-oxidizing microorganisms can bring down pH to a value needed for significant metal solubilization.

Keywords: Bioleaching, heavy metals, sewage sludge, iron oxidizing microorganisms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1686 Health Risk Assessment of Heavy Metals Adsorbed in Particulates

Authors: Sadovska V.

Abstract:

The progress of concentrations of particular heavy metals was assessed in chosen localities in region Moravia, the Czech Republic, from 2007 to 2009. Particular metals were observed in localities with various types and characterization of zone. Pb, Ni, As and Cd were emphasized as a result of their toxicity and potential adverse health effect to the exposed population. The progress of metal concentrations and their health effects in the most polluted localities were examined. According to the results, the air pollution limit values were not exceeded. Based on the health risk assessment, the probability of developing tumorous diseases is acceptable, except for the increased probability of cancer risk from long-term exposure to As.

Keywords: Air pollution, heavy metals, health risk assessment, individual lifetime cancer risk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
1685 Properties Modification of Fiber Metal Laminates by Nanofillers

Authors: R. Eslami-Farsani, S. M. S. Mousavi Bafrouyi

Abstract:

During past decades, increasing demand of modified Fiber Metal Laminates (FMLs) has stimulated a strong trend towards the development of these structures. FMLs contain several thin layers of metal bonded with composite materials. Characteristics of FMLs such as low specific mass, high bearing strength, impact resistance, corrosion resistance and high fatigue life are attractive. Nowadays, increasing development can be observed to promote the properties of polymer-based composites by nanofillers. By dispersing strong, nanofillers in polymer matrix, modified composites can be developed and tailored to individual applications. On the other hand, the synergic effects of nanoparticles such as graphene and carbon nanotube can significantly improve the mechanical, electrical and thermal properties of nanocomposites. In present paper, the modifying of FMLs by nanofillers and the dispersing of nanoparticles in the polymers matrix are discussed. The evaluations have revealed that this approach is acceptable. Finally, a prospect is presented. This paper will lead to further work on these modified FML species.

Keywords: Fiber metal laminate, nanofiller, polymer matrix, property modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
1684 Annealing of the Contact between Graphene and Metal: Electrical and Raman Study

Authors: A. Sakavičius, A. Lukša, V. Nargelienė, V. Bukauskas, G. Astromskas, A. Šetkus

Abstract:

We investigate the influence of annealing on the properties of a contact between graphene and metal (Au and Ni), using circular transmission line model (CTLM) contact geometry. Kelvin probe force microscopy (KPFM) and Raman spectroscopy are applied for characterization of the surface and interface properties. Annealing causes a decrease of the metal-graphene contact resistance for both Ni and Au.

Keywords: Graphene, Kelvin force probe microscopy, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
1683 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1682 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater

Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin

Abstract:

Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.

Keywords: Heavy metal, fly ash, molasses, diatomite, adsorption, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
1681 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids

Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi

Abstract:

The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).

Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929
1680 The Fire Performance of Exposed Timber Panels

Authors: Bernice V. Y. Wong, Kong Fah Tee

Abstract:

Cross-laminated timber is increasingly being used in the construction of high-rise buildings due to its simple manufacturing system. In term of fire resistance, cross-laminated timber panels are promoted as having excellent fire resistance, comparable to that of non-combustible materials and to heavy timber construction, due to the ability of thick wood assemblies to char slowly at a predictable rate while maintaining most of their strength during the fire exposure. This paper presents an overview of fire performance of cross-laminated timber and evaluation of its resistance to elevated temperature in comparison to homogeneous timber panels. Charring rates for cross-laminated timber panels of those obtained experimentally were compared with those provided by Eurocode simplified calculation methods.

Keywords: Timber structure, cross-laminated timber, charring rate, timber fire resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3382
1679 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia

Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan

Abstract:

The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.

Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
1678 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Burn-up, heavy water reactor, minor actinides, Monte Carlo, proliferation resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
1677 Ecological Risk Assessment of Heavy Metals in Contaminated Soil from a Point Source

Authors: S. A. Nta

Abstract:

The study assessed the levels of some heavy metals in the contaminated soil from a point source using pollution indices to measure the extent of pollution. The soil used was sandy-loam in texture. The contaminant used was landfill leachate, introduced as a point source through an entry point positioned at the center of top layer of the soil tank. Samples were collected after 50 days and analyzed for heavy metal (Zn, Ni, Cu and Cd) using standard methods. The mean concentration of Ni ranged from 5.55-2.65 mg/kg, Zn 3.67-0.85 mg/kg, Cu 1.60-0.93 mg/kg and Cd 1.60-0.15 mg/kg. The richness of metals was in decreasing order: Ni > Zn > Cu > Cd. The metals concentration was found to be maximum at 0.25 m radial distance from the point of leachate application. The geo-accumulation index (Igeo) studied revealed that all the metals recovered at 0.25 and 0.50 m radial distance and at 0.15, 0.30, 0.45 and 0.60 m depth from the point of application of leachate fall under unpolluted to moderately polluted range. Ecological risk assessment showed high ecological risk index with values higher than RI > 300. The RI shows that the ecological risk in this study was mostly contributed by Cd ranging from 9-96.

Keywords: Ecological risk, assessment, heavy metals, test soils, landfill leachate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
1676 Antimicrobial, Antiplasmid and Cytotoxicity Potentials of Marine Algae Halimeda opuntia and Sarconema filiforme Collected from Red Sea Coast

Authors: Samy A. Selim

Abstract:

The antimicrobial, antiplasmid and cytotoxic activities of marine algae Halimeda opuntia and Sarconema filiforme were investigated. Antimicrobial bioassay against some human pathogenic bacteria and yeast were conducted using disc diffusion method. Halimeda extract exhibited antibacterial activity against six species of microrganisms, with significant inhibition against Staphylococcus aureus. While Sarconema extract was better potent as antifungal against Candida albicans. Comparative antibacterial studies showed that Halimeda extract showed equivalent or better activity as compared with commercial antibiotic when tested against Staphylococcus aureus. Further tests conducted using dilution method showed both extracts as having bacteriostatic mode of action against the tested microorganisms. Methanol extract of two species showed significant cytotoxicity (LC50 <500μg) on brine shrimp. Halimeda opuntia showed highest cytotoxic activity (LC50 =192.3μg). Also, the present investigation was undertaken to investigate the ability of methanolic extract of the algal extracts to cure R-plasmids from certain clinical E. coli isolates. The active fraction of Halimeda and Sarconema could cure plasmids from E. coli at curing efficiencies of approximately 78%. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The screening results confirm the possible use of marine algae Halimeda opuntia and Sarconema filiforme as a source of pharmacological benefits.

Keywords: Antimicrobial, antiplasmid Cytotoxicity, Marine Algae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
1675 Study of the Transport of Multivalent Metal Cations through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón

Abstract:

In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.

Keywords: Ion-exchange Membranes, Electrochemical Impedance Espectroscopy, Multivalent Metal Cations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1674 Heavy Metal Contamination of a Dumpsite Environment as Assessed with Pollution Indices

Authors: Olubunmi S. Shittu, Olufemi J. Ayodele, Augustus O. A. Ilori, Abidemi O. Filani, Adetola T. Afuye

Abstract:

Indiscriminate refuse dumping in and around Ado-Ekiti combined with improper management of few available dumpsites, such as Ilokun dumpsite, posed the threat of heavy metals pollution in the surrounding soils and underground water that needs assessment using pollution indices. Surface soils (0-15 cm) were taken from the centre of Ilokun dumpsite (0 m) and environs at different directions and distances during the dry and wet seasons, as well as a background sample at 1000 m away, adjacent to the dumpsite at Ilokun, Ado-Ekiti, Nigeria. The concentration of heavy metals used to calculate the pollution indices for the soils were determined using Atomic Adsorption Spectrophotometer. The soils recorded high concentrations of all the heavy metals above the background concentrations irrespective of the season with highest concentrations at the 0 m except Ni and Fe at 50 m during the dry and wet season, respectively. The heavy metals concentration were in the order of Ni > Mn > Pb > Cr > Cu > Cd > Fe during the dry season, and Fe > Cr > Cu > Pb > Ni > Cd > Mn during the wet season. Using the Contamination Factor (CF), the soils were classified to be moderately contaminated with Cd and Fe to very high contamination with other metals during the dry season and low Cd contamination (0.87), moderate contamination with Fe, Pb, Mn and Ni and very high contamination with Cr and Cu during the wet season. At both seasons, the Pollution Load Index (PLI) indicates the soils to be generally polluted with heavy metals and the Geoaccumulation Index (Igeo) calculated shown the soils to be in unpolluted to moderately polluted levels. Enrichment Factor (EF) implied the soils to be deficiently enriched with all the heavy metals except Cr (7.90) and Cu (6.42) that were at significantly enrichment levels during the wet season. Modified Degree of Contamination (mCd) recorded, indicated the soils to be of very high to extremely high degree of contamination during the dry season and moderate degree of contamination during the wet season except 0 m with high degree of contamination. The concentration of heavy metals in the soils combined with some of the pollution indices indicated the soils in and around the Ilokun Dumpsite are being polluted with heavy metals from anthropogenic sources constituted by the indiscriminate refuse dumping.

Keywords: Contamination factor, enrichment factor, geoaccumulation index, modified degree of contamination, pollution load index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
1673 Cyanide and Heavy Metal Concentration of Fermented Cassava Flour (Lafun) Available in the Markets of Ogun and Oyo States of Nigeria

Authors: Adebayo-Oyetoro A. O., Oyewole O. B., Obadina A. O, Omemu M. A.

Abstract:

Fermented cassava flours (lafun) sold in Ogun and Oyo States of Nigeria were collected from 10 markets for a period of two months and analysed to determine their safety status. The presence of trace metals was due to high vehicular movement around the drying sites and markets. Cyanide and moisture contents of samples were also determined to assess the adequacy of fermentation and drying. The result showed that sample OWO was found to have the highest amount of 16.02±0.12mg/kg cyanide while the lowest was found in sample OJO with 10.51±0.10mg/kg. The results also indicated that sample TVE had the highest moisture content of 18.50±0.20% while sample OWO had the lowest amount of 12.46±0.47%. Copper and lead levels were found to be highest in TVE with values 28.10mg/kg and 1.1mg/kg respectively, while sample BTS had the lowest values of 20.6mg/kg and 0.05mg/kg respectively. High value of cyanide indicated inadequate fermentation.

Keywords: Cyanide, fermented, heavy metal, lafun.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2862
1672 Utilization of Cement Kiln Dust in Adsorption Technology

Authors: Yousef Swesi, Asia Elmeshergi, Abdelati Elalem, Walid Alfoghy

Abstract:

This paper involves a study of the heavy metal pollution of the soils around one of cement plants in Libya called Suk-Alkhameas and surrounding urban areas caused by cement kiln dust (CKD) emitted. Samples of soil was collected from sites at four directions around the cement factory at distances 250m, 1000m, and 3000m from the factory and at (0-10)cm deep in the soil. These samples are analyzed for Fe (iii), Zn(ii), and Pb (ii) as major pollutants. These values are compared with soils at 25 Km distances from the factory as a reference or control samples. The results show that the concentration of Fe ions in the surface soil was within the acceptable range of 1000ppm. However, for Zn and Pb ions the concentrations at the east and north sides of the factory were found six fold higher than the benchmark level. This high value was attributed to the wind which blows usually from south to north and from west to east. This work includes an investigation of the adsorption isotherms and adsorption efficiency of CKD as adsorbent of heavy metal ions (Fe (iii), Zn(ii), and Pb(ii)) from the polluted soils of Suk-Alkameas city. The investigation was conducted in batch and fixed bed column flow technique. The adsorption efficiency of the studied heavy metals ions removals onto CKD depends on the pH of the solution. The optimum pH values are found to be in the ranges of 8-10 and decreases at lower pH values. The removal efficiency of these heavy metals ions ranged from 93% for Pb, 94% for Zn, and 98% for Fe ions for 10 g.l-1 adsorbent concentration. The maximum removal efficiency of these ions was achieved at 50-60 minutes contact times at which equilibrium is reached. Fixed bed column experimental measurements are also made to evaluate CKD as an adsorbent for the heavy metals. Results obtained are with good agreement with Langmuir and Drachsal assumption of multilayer formation on the adsorbent surface.

Keywords: Adsorption, Cement Kiln dust (CKD & CAC), Isotherms, Zn and Pb ions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
1671 Catalytic Aquathermolysis of Egyptian Heavy Crude Oil

Authors: S. Desouky, A. Al sabagh , M. Betiha, A. Badawi, A. Ghanem, S. Khalil

Abstract:

Two Amphiphilic catalysts, iron (III) dodecylbenzene sulfonate and nickel (II) dodecylbenzene sulfonate, were synthesized and used in the catalytic aquathermolysis of heavy crude oil to reduce its viscosity. The prepared catalysts exhibited good performance in the aquathermolysis and the viscosity is reduced by ~ 78.9 % for Egyptian heavy crude oil. The chemical and physical properties of heavy oil both before and after reaction were investigated by FT-IR, dynamic viscosity, molecular weight and SARA analysis. The results indicated that the content of resin, asphaltene, average molecular weight and sulfur content of heavy oil is reduced after the catalytic aquathermolysis.

Keywords: Amphiphilic catalyst, Aquathermolysis, Heavy oil, Viscosity reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4521
1670 Removal of Ni(II), Zn(II) and Pb(II) ions from Single Metal Aqueous Solution using Activated Carbon Prepared from Rice Husk

Authors: Mohd F. Taha, Chong F. Kiat, Maizatul S. Shaharun, Anita Ramli

Abstract:

The abundance and availability of rice husk, an agricultural waste, make them as a good source for precursor of activated carbon. In this work, rice husk-based activated carbons were prepared via base treated chemical activation process prior the carbonization process. The effect of carbonization temperatures (400, 600 and 800oC) on their pore structure was evaluated through morphology analysis using scanning electron microscope (SEM). Sample carbonized at 800oC showed better evolution and development of pores as compared to those carbonized at 400 and 600oC. The potential of rice husk-based activated carbon as an alternative adsorbent was investigated for the removal of Ni(II), Zn(II) and Pb(II) from single metal aqueous solution. The adsorption studies using rice husk-based activated carbon as an adsorbent were carried out as a function of contact time at room temperature and the metal ions were analyzed using atomic absorption spectrophotometer (AAS). The ability to remove metal ion from single metal aqueous solution was found to be improved with the increasing of carbonization temperature. Among the three metal ions tested, Pb(II) ion gave the highest adsorption on rice husk-based activated carbon. The results obtained indicate the potential to utilize rice husk as a promising precursor for the preparation of activated carbon for removal of heavy metals.

Keywords: Activated carbon, metal ion adsorption, rice husk, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
1669 Extraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method

Authors: Johanna Anteroinen, Wonjae Kim, Kari Stadius, Juha Riikonen, Harri Lipsanen, Jussi Ryynanen

Abstract:

Graphene-metal contact resistance limits the performance of graphene-based electrical devices. In this work, we have fabricated both graphene field-effect transistors (GFET) and transfer length measurement (TLM) test devices with titanium contacts. The purpose of this work is to compare the contact resistances that can be numerically extracted from the GFETs and measured from the TLM structures. We also provide a brief review of the work done in the field to solve the contact resistance problem.

Keywords: Contact resistance, graphene, TLM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3754
1668 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate

Authors: A. Mohammed, A. Babatunde

Abstract:

This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.

Keywords: Constructed wetlands, ferric dewatered sludge, heavy metal, landfill leachate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001